Biost 590: Statistical Consulting

Statistical Classification of Scientific Questions

October 3, 2008

Scott S. Emerson, M.D., Ph.D.
Professor of Biostatistics, University of Washington

© 2000, Scott S. Emerson, M.D., Ph.D.
Lecture Outline: Today

• Scientific Method and Statistics
• Types of Statistical Questions
 • Clustering cases
 • Clustering variables
 • Quantification of distributions
 • Detecting associations
 • Prediction
Lecture Outline: Next Week

• Statistical Tasks:
 – Refining Hypotheses
 – Study design
 • Study structure
 • Statistical analysis plan
 • Sample size considerations
Scientific Method and Statistics
Stages of Scientific Studies

• Observation
 – Hypothesis generation
 – Confirmatory studies
 – Disadvantages:
 • Confounding
 • Limited ability to establish cause and effect
Stages of Scientific Studies

• Experiment
 – Intervention
 – Elements of experiment
 • Overall goal
 • Specific aims (hypotheses)
 • Materials and methods
 • Collection of data
 • Analysis
 • Interpretation; Refinement of hypotheses
Scientific Method

• A well designed study discriminates between hypotheses
 – The hypotheses should be the most important, viable hypotheses
 – All other things being equal, it should be equally informative for all possible outcomes
 – But may need to consider simplicity of experiments, time, cost
Addressing Variability

• Outcome measures rarely constant
 – Inherent randomness
 – Hidden (unmeasured) variables
Probability Models

- Probability models are used as a basis for variability
 - Distribution of measurements
 - Summary measure for scientific tendency
 - (Signal and noise)
Role of Statistics

- Statistics is used to
 - Describe tendencies of response
 - Quantify uncertainty in conclusions

- “Statistics means never having to say you are certain” (ASA sweatshirt)
Statistical Input at All Stages

– Understand overall goal
– Refine specific aims
 • Statistical statement of any hypotheses
– Materials and methods: Study design
– Collection of data: Advise on QC
– Analysis
 • Describe sample (materials and methods)
 • Analyses to address specific aims
– Interpretation
Classification: Scientific Goals

- Classification of studies by goals
 - Focus on sample
 - Description
 - Focus on population
 - Estimation
 - Generation of scientific hypotheses
 - Testing of scientific hypotheses
Classification: Statistical Goals

• Classification of studies that can be addressed statistically
 – Clustering of observations
 – Clustering of variables
 – Quantification of distributions
 – Comparing distributions
 – Prediction of individual observations
Statistical Classification of Scientific Questions
1. Cluster Analysis

- Focus is on identifying similar groups of observations
 - Divide a population into subgroups based on patterns of similar measurements
 - Univariate, multivariate
 - Known or unknown number of clusters
 - (All variables treated symmetrically: No delineation between outcomes and groups)
Example: Cluster Analysis

- Potential for different causes for the same clinical syndrome: Glucose in urine
 - Identify patterns of measurements that separate subpopulations of patients with diabetes
 - Age of onset
 - Symptoms at onset (e.g., weight)
 - Auto-antibodies
 - Characteristics of epidemics
Example: Cluster Analysis

• Statistical Tasks:
 – Training sample
 • Measure age, change in weight, auto-antibodies, etc.
 – Statistical analysis
 • Cluster analysis
 • Summarize variable distributions within identified clusters
 – (Attach labels?)
2. Clustering Variables

- Identifying hidden variables indicating groups that tend to have similar measurements of some outcome
 - Interest in some particular outcome measurement
 - Predictors that imprecisely measure some abstract quality
 - Desire to find patterns in predictors that more precisely reflect the abstract quality
Example: Factor Analysis

• Identifying barriers to patient compliance in clinical trials
 – In the Health Behavior Questionnaire, multiple variables might be used to measure
 • Self-perceived health; social support; depression
 – Desire is to
 • Find subset of questions that would suffice
 • Identify hidden variables that affect compliance
Example: Factor Analysis

- **Statistical Tasks:**
 - Training sample
 - Measure response to questionnaire
 - Statistical analysis
 - Factor analysis (principal components)
 - Report contribution to factors, factor loadings
 - (Attach labels?)
 - (Draw conclusions about importance of latent variables?)
Example: Genomics/Proteomics

• Combination of clustering cases and variables
 – Measure expression of 10,000 genes on (usually small) number of patients
 – Identify genes that tend to act the same way across patients
 • Pathways?
 – Identify groups of patients that tend to have the same patterns of gene expression
 • Subtypes of disease?
3. Quantifying Distributions

- Focus is on distributions of measurements within a population
 - Scientific questions about tendencies for specific measurements within a population
 - Point estimates of summary measures
 - Interval estimates of summary measures
 - Quantifying uncertainty
 - Decisions about hypothesized values
Example: Estimate Proportions

- Proportion of women among patients with primary biliary cirrhosis
 - Serious liver disease often leading to liver failure
 - Unknown etiology
 - Characterizing types of people who suffer from disease may provide clues about causes
 - (About 90% of patients with PBC are women)
Example: Estimate Proportions

• **Statistical Tasks**
 – Sample of patients *(from registry?)*
 • Measure demographics, etc.
 – Statistical analysis
 • Best estimate of the proportion
 • Quantify uncertainty in that estimate
 • Compare to the known proportion of women in the general population *(approximately 50%)*?
Example: Estimation of Median

- Median life expectancy of patients newly diagnosed with stage II breast cancer
 - Want to know prognosis
 - Judging public health risks
 - Patients’ planning (?really prediction)
Example: Estimation of Median

• Statistical Tasks
 – Sample of patients newly diagnosed with stage II breast cancer
 • Follow for survival time (may be censored)
 – Statistical analysis
 • Best estimate of the median survival (K-M?)
 • Quantify uncertainty in that estimate
 • Compare to some clinically important time range (e.g., 10 years)
4. Comparing Distributions

- Comparing distributions of measurements across populations
 - 4a. Identifying groups that have different distributions of some measurement
 - 4b. Quantifying differences in the distribution of some measurement across predefined groups (effects or associations)
 - 4c. Quantifying differences in effects across subgroups (interactions or effect modification)
4a. Identifying Groups

- Identifying groups that have different distributions of some measurement
 - Focus is on some particular outcome measurement
 - Identify groups based on other measurements
 - E.g., quantifying distributions within subgroups
 - E.g., stepwise regression models
 - (cf: Cluster analysis where all measurements are treated symmetrically)
Example: Identifying Groups

• Chromosomal abnormalities associated with ovarian cancer
 – Cytogenetic analysis of dividing cells identifies regions of the chromosomes with defects
 • Cancer is caused by some defects, and cancer causes other defects
 • Approximately 370 identifiable regions
 – Which of the regions are the most promising to explore in more focused studies?
Example: Identifying Groups

• Statistical Tasks:
 – Sample of cancer tissues
 • Measure type of cancer (ovarian, melanoma, etc.)
 • Measure chromosomal defects
 – Statistical analysis
 • Stepwise regression models of chromosomal abnormalities predicting cancer type
 – (Use p values to rank interest in particular regions?)
Example: Identifying Groups

• Risk factors for diabetes
 – Variables most associated with diabetes risk may give clues about etiology and eventual prevention
Example: Identifying Groups

- **Statistical Tasks**
 - Sample subjects to measure risk factors and disease prevalence
 - Cohort study
 - Case-control study
 - Statistical analysis
 - Stepwise model building
 - (Rank most interesting variables by p value?)
4b. Detecting Associations

- Associations between variables – distributions of one variable differ across groups defined by another
 - Existence of differences
 - Direction of tendency of effect
 - First, second order relationships in a summary measure
 - Characterization of dose-response in a summary measure
Definition of an Association

- The distributions of two variables are not independent
 - Independence: Equivalent definitions
 - Probability of outcome and exposure is product of
 - Overall probability of outcome, and
 - Overall probability of exposure
 - Distribution of exposure is EXACTLY the same across ALL outcome categories
 - Distribution of outcome is EXACTLY the same across ALL exposure categories
Summary Measures

- Generally we consider some summary measure of the distribution
 - For instance, when we use the mean, we show an association by showing either
 - Mean outcome differs across exposure groups
 - Mean exposure differs across outcome groups
Justification

• This works, because if two distributions are the same, ALL summary measures should be the same
 – If some summary measure is different, then we know the distributions are different

• HOWEVER: This means that it is easier to prove an association, than to prove no association
Example: Detecting Association

- Effect of blood cholesterol levels on risk of heart attacks
 - Understanding etiology of heart attacks may lead to prevention and/or treatment strategies
Example: Detecting Association

- **Statistical tasks**
 - Measure risk factors, MIs on sample
 - Cohort or case-control sample
 - Statistical analysis
 - Regression model (possibly adjusted)
 - Cohort: Incidence of MIs across cholesterol levels
 - Case-control: Cholesterol levels across MI status
 - (Comparison can be at many levels of detail)
 - Quantify estimates, precision, confidence in decisions
4c. Detecting Effect Modification

- Quantifying differences in effects across subgroups (interactions or effect modification)
 - Existence of interaction
 - Direction of interaction (synergy, antagonism)
 - Quantification of exact relationship of interaction
Example: Effect Modification

• Identifying whether effect of cholesterol on heart attacks differs by sex
 – Comparing association between blood cholesterol level and incidence of heart attacks between sexes
 • Quantify association in men
 • Quantify association in women
 • Compare measures of association
Approach Common to #3 & #4

- In answering each scientific question, statistics typically provides four numbers
 - Best estimate
 - “Best” can be defined by frequentist or Bayesian criteria
 - Interval describing precision
 - Confidence interval or Bayesian credible interval
 - Quantification of belief in some hypothesis
 - P value or Bayesian posterior probability
Example: Detecting Association

- Association between sex and prevalence of MI in elderly population
 - 59 of 366 males have had MI: 16.1%
 - 32 of 367 females have had MI: 8.7%
 - Association measured by difference
 - Best estimate: Prevalence 7.4% higher in males
 - Interval estimate: Between 2.7% and 12.2%
 - (95% confidence interval)
 - Strength of evidence: P value = 0.002
 - If there were no real difference, the observed data is pretty unlikely: Probability of this data is 0.002
5. Prediction

• Focus is on individual measurements
 – Point prediction:
 • Best single estimate for the measurement that would be obtained on a future individual
 – Continuous measurements
 – Binary measurements (discrimination)
 – Interval prediction:
 • Range of measurements that might reasonably be observed for a future individual
Example: Continuous Prediction

- **Creatinine clearance**
 - **Creatinine**
 - Breakdown product of creatine
 - Removed by the kidneys by filtration
 - Little secretion, reabsorption
 - Measure of renal function
 - Amount of creatinine cleared by the kidneys in 24 hours
Example: Continuous Prediction

• **Problem:**
 – Need to collect urine output (and blood creatinine) for 24 hours

• **Goal:**
 – Find blood, urine measures that can be obtained instantly, yet still provide an accurate estimate of a patient’s creatinine clearance
Example: Continuous Prediction

- **Statistical Tasks:**
 - Training sample
 - Measure true creatinine clearance
 - Measure sex, age, weight, height, creatinine
 - Statistical analysis
 - Regression model that uses other variables to predict creatinine clearance
 - Quantify accuracy of predictive model
 - (Mean squared error?)
Example: Discrimination

- Diagnosis of prostate cancer
 - Use other measurements to predict whether a particular patient might have prostate cancer
 - Demographic: Age, race, (sex)
 - Clinical: Symptoms
 - Biological: Prostate specific antigen (PSA)

- Goal is a diagnosis for each patient
Example: Discrimination

- **Statistical Tasks:**
 - Training sample
 - “Gold standard” diagnosis
 - Measure age, race, PSA
 - Statistical analysis
 - Regression model that uses other variables to predict prostate cancer diagnosis
 - Quantify accuracy of predictive model
 - (ROC curve analysis?)
Example: Interval Prediction

• Determining normal range for PSA
 – Identify the range of PSA values that would be expected in the 95% most typical healthy males
 – Age, race specific values
Example: Interval Prediction

• Statistical Tasks:
 – Training sample
 • Measure age, race, PSA
 – Statistical analysis
 • Regression model that uses other variables to define prediction interval
 – (Mean plus/minus 2 SD?)
 – (Confidence interval for quantiles?)
 • Quantify accuracy of predictive model
 – (Coverage probabilities?)
Comment About Prediction

• For me to consider a problem to be purely a prediction problem, interest must lie solely in the predicted value, and not in the way that value was obtained
 – E.g., in weather prediction, we might just want to know the weather tomorrow
 • We won’t be trying to impress upon our audience the way it should be predicted
 – I do not think this is very often the case
Lecture Outline: Next Week

• **Statistical Tasks:**
 – Refining Hypotheses
 – Study design
 • Study structure
 • Statistical analysis plan
 • Sample size considerations