Problem 1 - Estimating h by cross-validation

For this problem, submit your code through the Assignments page link.

In this problem you will compute and plot a kernel density estimate of the corresponding densities f and g given below (you have calculated these densities in homework 4).

$$f(x) = \begin{cases}
2x, & 0 \leq x \leq 1 \\
0, & \text{otherwise}
\end{cases} \quad (1)$$

$$g(x) = \begin{cases}
4x, & 0 \leq x \leq 0.5 \\
4(1-x), & 0.5 \leq x \leq 1 \\
0, & \text{otherwise}
\end{cases} \quad (2)$$

a. Read in the training set D consisting of $n = 1000$ samples from F and validation set D_v of $m = 300$ samples from files hw6-f-train.dat, hw6-f-valid.dat. Use a kernel of your choice and then find the optimal kernel width h by cross-validation. For this, construct $f_h(x)$ the density estimated from D with kernel width h. Then compute the likelihood $L_v(h)$ of the data in D_v under f_h. Also compute $L(h)$, the likelihood of the training set D under f_h. Repeat this for several values of h and plot $L_v(h)$ and $L(h)$ as a function of h on the same graph. (Suggested range of h: 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5).

Let h^* be the h that maximizes $L_v(h)$. Make a plot of $f_{h^*}(x)$ (by, for instance, computing the $f_{h^*}(x)$ values on a grid $x = -0.5, -0.49, -0.48, \ldots, 1.49, 1.5$). Plot the true $f(x)$ on the same graph.

The homework you hand in should contain: the equation of the chosen kernel, the formula(s) you used for f_h for the chosen kernel, the formula(s) you used to compute $L_v(h)$ and $L(h)$ and the required graphs. It is OK to replace likelihoods with log-likelihoods in the plots and equations.

b. Do the same for G and g, reading data from the files hw6-g-train.dat, hw6-g-valid.dat.

c. Compare the optimal h’s and the quality of the plots in a, b. Which of the densities looks easier to approximate? Which of the optimal kernels widths is larger, the one used for f or the one used for g? Can you suggest an explanation why?
Problem 2 - Discrete random variables

a A fair die is rolled; denote its outcome by \(X \in S_X = \{1, 2 \ldots 6\} \). The random variable \(Y \) is defined as

\[
Y(X) = \begin{cases}
3 & \text{if } X \text{ odd} \\
X/2 & \text{if } X \text{ even}
\end{cases}
\]

(3)

What is the outcome space \(S_Y \) of the random variable \(Y \)?

Evaluate the parameters \(\theta_j = P(Y = j) \equiv P_Y(j), j \in S_Y \) of the distribution \(P_Y \).

b. Denote by \(Z \) the boolean variable \(X \geq Y \) (i.e. \(Z = 1 \) if \(X \geq Y \) and 0 otherwise). Compute the probability distribution \(P_Z \). [Hint: note that as \(Y \) is a function of \(X \), \(Z \) can be computed based on \(X \) only.]

c. Two fair dice are thrown; denote by \(X = (X_1, X_2) \) the outcome of this experiment and by \(S_X \) its outcome space. Let \(U = |X_1 - X_2| \). What is the sample space \(S_U \) of the random variable \(U \)? Evaluate the parameters \(\phi_j = P(U = j) \equiv P_U(j), j \in S_U \) of the distribution \(P_U \).

d. Calculate the expectation of \(Y \).

e. Calculate the expectation of \(Z \).

f. Calculate the expectation of \(U \).