Spectral Representation Theorem: I

• $|\text{Fourier transform}|^2$ of $\{g_t\}$ decomposes energy across f’s (Parseval)

• goal: decompose variance of $\{X_t\}$ across frequencies (assume $E\{X_t\} = 0$, $\Delta t = 1$)

• $\text{var} \{X_t\} = E\left\{\frac{1}{N} \sum_{i=1}^{N} X_i^2\right\} = \text{expected power}$

• can we use “$\{g_t\}$” theory to represent $\{X_t\}$?

• Cramér (1942) used infinite-order harmonic processes

• start with finite-order harmonic process:

$$X_t = \sum_{l=1}^{L} D_l \cos (2\pi f_l t + \phi_l), \quad t = 0, \pm 1, \pm 2, \ldots$$

– D_l’s and f_l’s real-valued constants

– ϕ_l terms independent rv’s, uniformly distributed over $[-\pi, \pi]$

– f_l ordered such that $f_l < f_{l+1}$

– $0 < f_l < 1/2$ for all l (simplifies treatment)
Spectral Representation Theorem: II

- rewrite cosine terms as complex exponentials:
 \[D_l \cos (2\pi f_l t + \phi_l) = \frac{D_l}{2} \left(e^{i\phi_l} e^{i2\pi f_l t} + e^{-i\phi_l} e^{-i2\pi f_l t} \right) \]

- can reexpress model using complex exponentials:
 \[X_t = \sum_{l=-L}^{L} C_l e^{i2\pi f_l t}, \quad C_l = \begin{cases} D_l e^{i\phi_l}/2, & l = 1, \ldots, L; \\ D_0 \equiv 0, & l = 0; \\ C_{-l}^*, & l = -L, \ldots, -1, \end{cases} \]
 where \(f_0 \equiv 0 \) and \(f_{-l} \equiv -f_l \)

- \(C_1, \ldots, C_L \) pairwise uncorrelated (why?)

- Exer. [4.1]: \(\text{cov}\{C_{-l}, C_l\} = 0 \Rightarrow C_l \)'s uncorrelated!

- yields \(\text{var}\{X_t\} = \sum_{l=-L}^{L} \text{var}\{C_l e^{i2\pi f_l t}\} \)

 - \(\text{var}\{C_l e^{i2\pi f_l t}\} = |e^{i2\pi f_l t}|^2 \text{var}\{C_l\} = \text{var}\{C_l\} \)

 - \(\text{var}\{C_l\} = E\{|C_l|^2\} - |E\{C_l\}|^2 \)

 - \(E\{|C_l|^2\} = E\{|D_l e^{i\phi_l}/2|^2\} = D_l^2/4 \)

 - \(E\{C_l\} = E\{D_l e^{i\phi_l}/2\} = D_l E\{e^{i\phi_l}\} = 0 \)

- yields \(\text{var}\{X_t\} = \sum_{l=-L}^{L} D_l^2/4 \)
Spectral Representation Theorem: III

- can define variance spectrum:

\[S^{(V)}(f) \equiv \begin{cases} \frac{D^2_l}{4}, & \text{if } f = f_l \text{ for } l = -L, \ldots, L; \\ 0, & \text{otherwise}. \end{cases} \]

- define complex-valued “jump” process on \([0, 1/2]\):

\[Z(f) \equiv \begin{cases} 0, & \text{if } f = 0; \\ \sum_{j=0}^l C_j, & \text{for } f_l < f \leq f_{l+1}, \; l = 0, \ldots, L. \end{cases} \]

Note: \(f_{L+1} \equiv 1/2 \)

- implies, for example:

\[Z(f) = \begin{cases} 0, & \text{if } 0 \leq f \leq f_1; \\ C_1, & \text{if } f_1 < f \leq f_2; \\ C_1 + C_2, & \text{if } f_2 < f \leq f_3; \\ C_1 + C_2 + C_3, & \text{if } f_3 < f \leq f_4; \text{ etc.} \end{cases} \]

- for small \(df > 0 \), define increment process:

\[dZ(f) \equiv \begin{cases} Z(f + df) - Z(f), & \text{if } 0 \leq f \& f + df < 1/2; \\ 0, & \text{if } f = 1/2; \\ dZ^*(-f), & \text{if } -1/2 \leq f < 0. \end{cases} \]

- note: \(dZ(f_l) = Z(f_l + df) - Z(f_l) = C_l \)

while \(dZ(f) = 0 \) if \(f \neq f_l \) for some \(l \)

- \(E\{dZ(f)\} = 0 \& \text{ var } \{dZ(f)\} = S^{(V)}(f) \) for all \(f \)
Spectral Representation Theorem: IV

• \{Z(f)\} called process with orthogonal increments:
 \[
 \text{cov}\{dZ(f'), dZ(f)\} = \begin{cases}
 E\{|C_l|^2\} = S^{(V)}(f), & f' = f = f_l; \\
 0, & \text{otherwise}.
\end{cases}
 \]

• let \(g(\cdot)\) be a continuous function defined on \([-1/2, 1/2]\), & let \(H(\cdot)\) be piecewise constant with jumps \(b_1, b_2, \ldots, b_N\) at locations \(-1/2 < a_1 < a_2 < \cdots < a_N < 1/2\)

• by definition \(\int_{-1/2}^{1/2} g(f) \, dH(f) \equiv \sum_{k=1}^{N} g(a_k)b_k\)

• thus: \(X_t = \sum_{l=-L}^{L} C_le^{i2\pi ft} = \int_{-1/2}^{1/2} e^{i2\pi ft} \, dZ(f)\)

• RHS is spectral representation for harmonic process

• by letting \(L \to \infty\), holds for all real-valued discrete parameter stationary processes \(\{X_t\}\)

• properties of \(\{Z(f)\}\) in general case:
 - \(E\{dZ(f)\} = 0\) for all \(|f| \leq 1/2\)
 - var \(\{dZ(f)\} = E\{|dZ(f)|^2\} = dS^{(I)}(f)\), where \(S^{(I)}(\cdot)\) is integrated spectrum
 - \(\text{cov}\{dZ(f'), dZ(f)\} = 0\) for \(f' \neq f\)
Basic Consequences of Theorem

• integrated spectrum determines acvs:

\[s_\tau = E\{X_t X_{t+\tau}\} = E\{X_t^* X_{t+\tau}\} \]

\[= E\left\{ \int_{-1/2}^{1/2} e^{-i2\pi f' t} dZ^* (f') \int_{-1/2}^{1/2} e^{i2\pi f(t+\tau)} dZ (f) \right\} \]

\[= \int_{-1/2}^{1/2} \int_{-1/2}^{1/2} e^{i2\pi (f-f') t} e^{i2\pi f \tau} E\{dZ^* (f') dZ (f)\} \]

\[= \int_{-1/2}^{1/2} e^{i2\pi f \tau} E\{|dZ (f)|^2\} = \int_{-1/2}^{1/2} e^{i2\pi f \tau} dS^{(I)} (f) \]

• if \(S^{(I)}(\cdot) \) differentiable, then \(dS^{(I)}(f) = S(f) \, df \)
 (note: need not be differentiable)

• \(S(\cdot) \) called spectral density function (sdf):

\[s_\tau = \int_{-1/2}^{1/2} e^{i2\pi f \tau} S(f) \, df \]

• if \(S(\cdot) \) square integrable, can appeal to FT theory:

\[S(f) = \sum_{\tau=-\infty}^{\infty} s_\tau e^{-i2\pi f \tau} \]

• sdf sometimes \emph{defined} as above (not true in general)

• when true, have \(\{ s_\tau \} \longleftrightarrow S(\cdot) \)
Extension to Other Stationary Processes

- real-valued cont. parameter stat. process \{X(t)\}:
 \[X(t) = \int_{-\infty}^{\infty} e^{i2\pi ft} \, dZ(f) \]
 - only limits of integration change
 - \(s(\tau) = \int_{-\infty}^{\infty} e^{i2\pi f\tau} \, dS^{(I)}(f) = \int_{-\infty}^{\infty} S(f)e^{i2\pi f\tau} \, df \)
 if \(S^{(I)}(\cdot) \) is differentiable
 - \(S(f) = \int_{-\infty}^{\infty} s(\tau)e^{-i2\pi f\tau} \, d\tau \)
 if \(S(\cdot) \) square integrable

- complex-valued stationary processes \{Z_t\} & \{Z(t)\}:
 \[dZ(f) = dZ^*(-f) \text{ need not hold (only change!)} \]
Basic Properties of Spectrum

- \(E\{|dZ(f)|^2\} = dS^{(I)}(f) = S(f) \, df \Rightarrow S(f) \geq 0 \)
- \(dZ(f) = dZ^*(-f) \Rightarrow S(f) = S(-f) \); i.e., “2 sided”
- \(S(f) = \frac{dS^{(I)}(f)}{df} \Rightarrow S^{(I)}(f) = \int_{-1/2}^{f} S(f') \, df' \)
- implies \(S^{(I)}(-1/2) = 0 \)
- if \(f_1 < f_2 \), then \(S^{(I)}(f_1) \leq S^{(I)}(f_2) \) (nondecreasing)
- \(s_0 = \int_{-1/2}^{1/2} dS^{(I)}(f) = S^{(I)}(f) \bigg|_{-1/2}^{1/2} = S^{(I)}(1/2); \)
- \(S^{(I)}(1/2) = \text{var} \{X_t\} \)
- \(S^{(I)}(\cdot) \) bounded because \(\text{var} \{X_t\} < \infty \) always
- \(0 \leq S^{(I)}(f) \leq s_0 = \text{var} \{X_t\} \)
- \(\text{var} \{X_t\} = s_0 = \int_{-1/2}^{1/2} S(f) \, df \)
- Wold’s theorem: necessary and sufficient condition for \(\{s_\tau\} \) to be acvs for some stat. process \(\{X_t\} \) is existence of nondecreasing function \(S^{(I)}(\cdot) \) such that \(S^{(I)}(-1/2) = 0, \ S^{(I)}(1/2) = \text{var} \{X_t\} \) and
 \[s_\tau = \int_{-1/2}^{1/2} e^{i2\pi f \tau} \, dS^{(I)}(f) \]
Example: Spectrum for White Noise

- let \(\{\epsilon_t\} \) be white noise with variance \(\sigma^2 \)
- acvs given by \(s_0 = \sigma^2 \) & \(s_\tau = 0 \) for \(\tau \neq 0 \)
- consider \(S^{(I)}(f) = \sigma^2(f + \frac{1}{2}) \)
 - nondecreasing function of \(f \), as required
 - \(S^{(I)}(-1/2) = 0 \), as required
 - \(S^{(I)}(1/2) = \sigma^2 \), as required
- differentiable with derivative \(S(f) = \sigma^2 \)
- note that
 \[
 \int_{-1/2}^{1/2} e^{i2\pi f\tau} dS^{(I)}(f) = \int_{-1/2}^{1/2} e^{i2\pi f\tau} S(f) df = \sigma^2 \int_{-1/2}^{1/2} e^{i2\pi f\tau} df = \begin{cases} \sigma^2, & \tau = 0; \\ 0, & \tau \neq 0, \end{cases}
 \]
 \(= s_\tau \)
- Wold’s theorem \(\Rightarrow S^{(I)}(\cdot) \) integrated spectrum
- \(S(\cdot) \) is sdf for \(\{\epsilon_t\} \)
- sdf is constant (analogous to white light)
 (\(\{X_t\} \) with nonconstant sdf = “colored” noise)
Example: Harmonic Process

- acvs given by $s_\tau = \sum_{l=1}^{L} \frac{D_l^2}{2} \cos(2\pi f_l \tau) = \sum_{l=-L}^{L} \frac{D_l^2}{4} e^{i2\pi f_l \tau}$
 (here $D_0 = f_0 = 0$; $D_{-l} = D_l$; $f_{-l} = -f_l$)

- let $S^{(I)}(\cdot)$ be step function, jumps at $\pm f_l$ of size $D_l^2/4$
 - nondecreasing function of f, as required
 - $S^{(I)}(-1/2) = 0$, as required
 - $S^{(I)}(1/2) = \sum_{l=-L}^{L} \frac{D_l^2}{4} = \sum_{l=1}^{L} \frac{D_l^2}{2} = s_0$, as required

- note that
 $$\int_{-1/2}^{1/2} e^{i2\pi f \tau} dS^{(I)}(f) = \sum_{l=-L}^{L} \frac{D_l^2}{4} e^{i2\pi f_l \tau} = s_\tau$$

- Wold’s theorem \Rightarrow $S^{(I)}(\cdot)$ integrated spectrum

- $S^{(I)}(\cdot)$ not differentiable \Rightarrow no true sdf, but:
 - can define “sdf” using Dirac δ functions:
 $$S(f) = \sum_{l=-L}^{L} \frac{D_l^2}{4} \delta(f - f_l)$$
 - integration yields step function:
 $$\int_{-1/2}^{f} S(f') df' = \sum_{l: f_l \leq f} \frac{D_l^2}{4} = S^{(I)}(f)$$
Classification of Spectra

• sdf $S(\cdot)$ resembles pdf \textit{except}: sdf integrates to process variance ($\neq 1$ in general)
• $S^{(I)}(\cdot)$ resembles probability distribution function
• Lebesgue decomposition theorem (adapted to $S^{(I)}(\cdot)$): can always write $S^{(I)}(\cdot)$ as a sum of up to three canonical integrated spectra $S_1^{(I)}(\cdot), S_2^{(I)}(\cdot)$ & $S_3^{(I)}(\cdot)$, each of which is nondecreasing and satisfies $S_i^{(I)}(-1/2) = 0$

1. $S_1^{(I)}(\cdot)$ is absolutely continuous, so
$$\frac{dS_1^{(I)}(f)}{df} = S(f), \text{ an sdf}$$

2. $S_2^{(I)}(\cdot)$ is a step function with jump of size $p_l > 0$
 at $f_l, l = 1, 2, \ldots$

3. $S_3^{(I)}(\cdot)$ is a continuous singular function:
 – derivative is zero almost everywhere
 – continuous
 – strictly increasing
 – bizarre!: can ignore in practical applications
Four Classes of Spectra

1. purely continuous: $S^{(I)}(f) = S_1^{(I)}(f)$
 - $\{X_t\}$ has sdf $S(\cdot)$ equivalent to $S^{(I)}(\cdot)$
 - Riemann–Lebesgue: $s_\tau \to 0$ as $|\tau| \to \infty$
 - examples: white noise, AR(p) & MA(q) processes

2. purely discrete: $S^{(I)}(f) = S_2^{(I)}(f)$
 - $\{X_t\}$ has line spectrum equivalent to $S^{(I)}(\cdot)$
 - acvs doesn’t converge to zero as $|\tau| \to \infty$
 - $\{X_t\}$ is a harmonic process

3. discrete: $S^{(I)}(f) = \sigma^2 (f + \frac{1}{2}) + S_2^{(I)}(f)$ with $\sigma^2 > 0$
 - $S_1^{(I)}(\cdot) \Leftrightarrow$ sdf for white noise
 - acvs doesn’t converge to zero as $|\tau| \to \infty$
 - $\{X_t\}$ is a harmonic process + white noise

4. mixed: $S^{(I)}(f) = S_1^{(I)}(f) + S_2^{(I)}(f)$
 - $S_1^{(I)}(\cdot) \Leftrightarrow$ sdf for colored noise
 - acvs doesn’t converge to zero as $|\tau| \to \infty$
 - $\{X_t\}$ is a harmonic process + colored noise
 - examples: Figures 142–3
Sampling and Aliasing

• suppose \(\{X(t)\} \) has sdf \(s(\cdot) \iff S_{X(t)}(\cdot) \)

• define \(X_t = X(t_0 + t \Delta t) \)

• acvs for \(\{X_t\} \) given by

\[
s_\tau = \text{cov} \{X_t, X_{t+\tau}\}
= \text{cov} \{X(t_0 + t \Delta t), X(t_0 + [t + \tau] \Delta t)\} = s(\tau \Delta t)
\]

• sdf for \(\{X_t\} \) given by p. 98:

\[
S_{X_t}(f) = \sum_{k=-\infty}^{\infty} S_{X(t)}(f+k/\Delta t), \quad |f| \leq \frac{1}{2 \Delta t} \equiv f(N)
\]

\(S_{X_t}(\cdot) \) is aliased version of \(S_{X(t)}(\cdot) \)

• example: Figure 145

\(- \Delta t = 1/2 \) preferable to \(\Delta t = 1/4 \)?