Multitaper Spectral Estimation

• tapering useful for $S(\cdot)$ with large dynamic range . . .
 . . . but increases variance of $\hat{S}^{(lw)}(f)$ by $C_h > 1$
• alternatives to $\hat{S}^{(lw)}(\cdot)$ (i.e., smoothing $\hat{S}^{(d)}(\cdot)$):
 – prewhitening (cf. Chapter 9)
 – WOSA
 – multitapering (Thomson, 1982)
• why multitapering?
 – works automatically on high dynamic range sdf’s
 – natural definition of resolution
 – can tradeoff bias/variance/resolution easily
 – for some processes, can argue
 * superior to prewhitening (Thomson, 1990a)
 * superior to WOSA (Bronez, 1992)
 – produces $\hat{S}^{(d)}(\cdot)$ with $2 < \nu \leq 2K$ dof
 * $K =$ number of tapers (2 to 10 typically)
 * Figure 257: shrinks 95% c.i.’s considerably
 – can get internal estimate of variance
 – can handle mixed spectra (i.e., line components)
 – extends naturally to irregularly sampled processes
Outline

• present basic ideas behind multitapering
• discuss two family of multitapers
• argue multitapering recovers ‘lost information’
• consider multitapering of white noise
• relate multitapering to quadratic estimators
• conclude with example (ocean wave data)
Basics of Multitapering: I

- average of K direct spectral estimators:
 $$\hat{S}^{(mt)}(f) \equiv \frac{1}{K} \sum_{k=0}^{K-1} \hat{S}_k^{(mt)}(f)$$
is basic multitaper estimator, where
 $$\hat{S}_k^{(mt)}(f) \equiv \Delta t \left| \sum_{t=1}^{N} h_{t,k} X_t e^{-i2\pi ft} \Delta t \right|^2$$
is called kth eigenspectrum; uses kth taper $\{h_{t,k}\}$ (note resemblance to WOSA estimator)
- each taper normalized such that $\Sigma_t h_{t,k}^2 = 1$
- spectral window for kth eigenspectrum:
 $$\mathcal{H}_k(f) \equiv \Delta t \left| \sum_{t=1}^{N} h_{t,k} e^{-i2\pi ft} \Delta t \right|^2$$
- each eigenspectrum is example of $\hat{S}^{(d)}(\cdot)$, so
 $$E\{\hat{S}_k^{(mt)}(f)\} = \int_{f(N)}^{f(N)} \mathcal{H}_k(f - f') S(f') df$$
- thus have
 $$E\{\hat{S}^{(mt)}(f)\} = \int_{f(N)}^{f(N)} \overline{\mathcal{H}}(f - f') S(f') df'$$
 $$\overline{\mathcal{H}}(f) \equiv \frac{1}{K} \sum_{k=0}^{K-1} \mathcal{H}_k(f)$$
- leakage for $\hat{S}^{(mt)}(\cdot)$ ok if $\mathcal{H}_k(\cdot)$’s have small sidelobes
Basics of Multitapering: II

• assume $S(\cdot)$ locally constant about f

• for $j \neq k$, can argue $\text{cov} \{ \hat{S}_j^{(mt)}(f), \hat{S}_k^{(mt)}(f) \} \approx 0$
 if tapers are orthogonal; i.e.,
 \[\sum_{t=1}^{N} h_{t,j} h_{t,k} = 0 \]

• $\text{var} \{ \hat{S}_k^{(mt)}(f) \} \approx S^2(f) \implies \text{var} \{ \hat{S}^{(mt)}(f) \} \approx S^2(f)/K$

• two sets of orthonormal tapers in common use
 – dpss tapers (Thomson, 1982)
 – sine tapers (Riedel and Sidorenko, 1995)
DPSS Multitapers: I

- tapers minimize spectral window sidelobes

- for fixed resolution bandwidth $2W$, measure sidelobes via

 $$\beta_k^2(W) \equiv \frac{\int_{-W}^{W} \mathcal{H}_k(f) \, df}{\int_{-f_n}^{f_n} \mathcal{H}_k(f) \, df}$$

- for given W and N
 - $\{h_{t,0}\}$ maximizes $\beta_0^2(W)$
 - $\{h_{t,k}\}$ maximizes $\beta_k^2(W)$ amongst sequences orthogonal to $\{h_{t,0}\}, \ldots, \{h_{t,k-1}\}$

- computation of $\{h_{t,k}\}$'s requires solution of $Ah_k = \beta_k^2(W)h_k$ with $h_k^T = [h_{1,k}, \ldots, h_{N,k}]$;

 $$A_{t',t} = \frac{\sin(2\pi W(t' - t))}{\pi(t' - t)}$$

 is (t', t)th element of $N \times N$ matrix A

 - Section 8.1: inverse iteration (stable, but slow)
 - Section 8.2: numerical integration (Thomson, 1982)
 - Section 8.3: tridiagonal formulation (fast)

- note: simple approx. to $\{h_{t,0}\}$ in Equation (386)
DPSS Multitapers: II

• number of \(\{h_{t,k}\} \)'s with good leakage protection is \(2NW \Delta t - 1 \) or less

• strategy & considerations for picking \(K \)

 - set resolution bandwidth \(2W \)

 * \(\Delta f \equiv 1/N \Delta t = \) spacing between \(f_k \)'s
 (i.e., Fourier frequencies)

 * usually set \(W = J \Delta f \iff NW = J/\Delta t \)
 for \(J = 2, 3, 4, \ldots \)

 - set \(K < 2NW \Delta t = 2J \), noting that

 * leakage gets worse as \(K \) increases

 * variance decreases as \(K \) increases

 - increasing \(W \) implies

 * resolution decreases

 * more leakage free tapers (i.e., can increase \(K \))

 - Figures 336–41 use \(NW = 4 \) (i.e, \(2NW = 8 \))

 * maximum \(K \) should be is 7

 * eighth taper \(\{h_{t,7}\} \) also depicted
Sine Multitapers: I

- tapers minimize ‘spectral window bias’
 - recall notion of smoothing window bias:
 \[b_W \approx \frac{S''(f)}{2} \int_{-f(N)}^{f(N)} \phi^2 W_m(\phi) \, d\phi = \frac{S''(f)}{24} \beta_W^2 \]
 (used to derive Papoulis lag window)
 - same approach yields spectral window bias:
 \[b_{\mathcal{H}_k} \approx \frac{S''(f)}{2} \int_{-f(N)}^{f(N)} \phi^2 \mathcal{H}_k(\phi) \, d\phi \equiv \frac{S''(f)}{24} \beta_{\mathcal{H}_k}^2 \]

- for given \(N \)
 - \(\{h_{t,0}\} \) minimizes \(\beta_{\mathcal{H}_0}^2 \)
 - \(\{h_{t,k}\} \) minimizes \(\beta_{\mathcal{H}_k}^2 \) amongst sequences
 orthogonal to \(\{h_{t,0}\}, \ldots, \{h_{t,k-1}\} \)

- note: Riedel & Sidorenko (1995) actually used continuous parameter processes

- can approximate solutions well using
 \[
 h_{t,k} = \left\{ \frac{2}{N+1} \right\}^{1/2} \sin \left\{ \frac{(k + 1)\pi t}{N + 1} \right\},
 \]
 which is very easy to compute!
Sine Multitapers: II

- all \(\{ h_{t,k} \} \)'s offer moderate leakage protection

- strategy & considerations for picking \(K \)
 - resolution bandwidth = \((K + 1)/(N + 1)\)
 (i.e., increases with \(K \))
 - leakage relatively unchanged as \(K \) increases
 - can trade off resolution & variance:
 * decrease resolution by increasing \(K \)
 * decrease variance by increasing \(K \)

- sine tapers vs. dpss tapers
 - 1 parameter \((K)\) vs. 2 parameters \((2W & K)\)
 - moderate leakage protection vs.
 adjustable leakage protection
 - juggle resolution/variance vs.
 juggle leakage/resolution/variance
 - simple expression vs. need software to compute

- Figures 336s–41s show first 8 sine tapers
Recovery of ‘Lost Information’

• dpss tapers are solutions to \(A h_k = \beta_k^2(W) h_k \)
• \(N \) orthonormal solutions \(h_0, \ldots, h_{N-1} \)
• can order via eigenvalues (concentration measure):
 \[
 1 > \beta_0^2(W) > \beta_1^2(W) > \cdots > \beta_{N-1}^2(W) > 0
 \]
• only first \(K < 2NW \Delta t \) have \(\beta_k^2(W) \approx 1 \)
• form \(V = [h_0, h_1, \ldots, h_{N-1}] \)
• \(V^T V = I \) restates orthonormality:
 \[
 \sum_{t=1}^N h_{t,j} h_{t,k} = \begin{cases} 1, & j = k; \\ 0, & j \neq k. \end{cases}
 \]
• since \(V^T = V^{-1} \), also have \(VV^T = I \), yielding
 \[
 \sum_{k=0}^{N-1} h_{t,k} h_{t',k} = \begin{cases} 1, & t = t'; \\ 0, & t \neq t'. \end{cases}
 \]
• thus have (because \(\ast \) is unity)
 \[
 \sum_{k=0}^{K-1} \sum_{t=1}^N (h_{t,k} X_t)^2 = \sum_{t=1}^N X_t^2 \sum_{k=0}^{N-1} h_{t,k}^2 = \sum_{t=1}^N X_t^2 \tag{\ast}
 \]
• Figure 345 plots \(\sum_{k=0}^{K-1} h_{t,k}^2 \) versus \(t \)
 – \(K = 1, \ldots, 8 \) for \(NW \Delta t = 4 \)
 – shows relative influence of \(X_t \)'s (cf. \(\ast \))
Multitapering of White Noise: I

- assume X_1, \ldots, X_N is Gaussian white noise, mean zero, unknown variance s_0, sdf $S(f) = s_0$ (setting $\Delta t = 1$ here for convenience)
- best estimate of s_0 is $\sum_{t=1}^N X_t^2 / N = \hat{s}_0^{(p)}$
- implies best estimate of $S(f)$ is $\hat{s}_0^{(p)}$
- can obtain best estimator from $\hat{S}^{(p)}(\cdot)$ via
 \[
 \int_{-1/2}^{1/2} \hat{S}^{(p)}(f) \, df = \hat{s}_0^{(p)}; \\
 \text{i.e., ‘smoothing’ with } W_m(f) = 1 \text{ (cf. Exercise [6.6a])}
 \]
- Equation (278b) says $\text{var} \{ \hat{s}_0^{(p)} \} = 2s_0^2 / N$
Multitapering of White Noise: II

- let $\hat{S}^{(d)}(\cdot)$ be direct spectral estimator using $\{\tilde{h}_{t,0}\}$
- smoothing $\hat{S}^{(d)}(\cdot)$ with $W_m(f) = 1$ yields
 \[\int_{-1/2}^{1/2} \hat{S}^{(d)}(f) \, df = \sum_{t=1}^{N} \tilde{h}_{t,0}^2 X_t^2 = \hat{s}_0^{(d)}. \]
- since $\text{var}\{X_t^2\} = 2s_0^2$ (Equation (40)), have
 \[\text{var}\{\hat{s}_0^{(d)}\} = \sum_{t=1}^{N} \text{var}\{\tilde{h}_{t,0}^2 X_t^2\} = 2s_0^2 \sum_{t=1}^{N} \tilde{h}_{t,0}^4 = 2s_0^2 C_h/N \]
- use Cauchy inequality
 \[\left| \sum_{t=1}^{N} a_t b_t \right|^2 \leq \sum_{t=1}^{N} |a_t|^2 \sum_{t=1}^{N} |b_t|^2, \]
 with $a_t = \tilde{h}_{t,0}^2$ and $b_t = 1$ to argue $\sum_{t=1}^{N} \tilde{h}_{t,0}^4 \geq 1/N$; i.e., $C_h \geq 1$ (equality if and only if $\tilde{h}_{t,0} = 1/\sqrt{N}$)
- can conclude $\text{var}\{\hat{s}_0^{(d)}\} > 2s_0^2/N = \text{var}\{\hat{s}_0^{(p)}\}$
 for any nonrectangular taper
Multitapering of White Noise: III

- claim: multitapering reclaims best estimator
- let \(\{\tilde{h}_{t,0}\}, \{\tilde{h}_{t,1}\}, \ldots, \{\tilde{h}_{t,N-1}\} \) be orthonormal
- let \(\tilde{V} \) be the \(N \times N \) matrix given by

\[
\tilde{V} \equiv \begin{bmatrix}
\tilde{h}_{1,0} & \tilde{h}_{1,1} & \ldots & \tilde{h}_{1,N-1} \\
\tilde{h}_{2,0} & \tilde{h}_{2,1} & \ldots & \tilde{h}_{2,N-1} \\
\vdots & \vdots & \ddots & \vdots \\
\tilde{h}_{N,0} & \tilde{h}_{N,1} & \ldots & \tilde{h}_{N,N-1}
\end{bmatrix}
\]

- orthonormality says \(\tilde{V}^T \tilde{V} = I \) & hence \(\tilde{V} \tilde{V}^T = I \)
- \(k \)th eigenspectrum: \(\tilde{S}_k^{(mt)}(f) \equiv \left| \sum_{t=1}^{N} \tilde{h}_{t,k} X_t e^{-i2\pi ft} \right|^2 \)
- form \(\tilde{S}^{(mt)}(\cdot) \) by averaging all \(\tilde{S}_k^{(mt)}(\cdot) \)’s:

\[
\tilde{S}^{(mt)}(f) \equiv \frac{1}{N} \sum_{k=0}^{N-1} \tilde{S}_k^{(mt)}(f)
\]

\[
= \frac{1}{N} \sum_{k=0}^{N-1} \left(\sum_{t=1}^{N} \tilde{h}_{t,k} X_t e^{-i2\pi ft} \right) \left(\sum_{u=1}^{N} \tilde{h}_{u,k} X_u e^{i2\pi fu} \right)
\]

\[
= \frac{1}{N} \sum_{t=1}^{N} \sum_{u=1}^{N} X_t X_u \underbrace{\left(\sum_{k=0}^{N-1} \tilde{h}_{t,k} \tilde{h}_{u,k} \right)}_{1 \text{ if } t = u; \ 0 \text{ if } t \neq u} e^{-i2\pi f(t-u)}
\]

\[
= \frac{1}{N} \sum_{t=1}^{N} X_t^2 = \hat{s}_0^{(p)}
\]

- note: holds for any set of orthonormal tapers!
Multitapering of White Noise: IV

- as K increases, can study rate of decay

$$\text{var} \left\{ \hat{S}^{(mt)}(f) \right\} = \text{var} \left\{ \frac{1}{K} \sum_{k=0}^{K-1} \hat{S}^{(mt)}_k(f) \right\}$$

$$= \frac{1}{K^2} \sum_{j=0}^{K-1} \sum_{k=0}^{K-1} \text{cov} \left\{ \hat{S}^{(mt)}_j(f), \hat{S}^{(mt)}_k(f) \right\}$$

- Exer. [7.1b] gives how to compute for white noise

- Figure 350: example for $f = 1/4$ using dpss tapers
 - $N = 64; NW = 4; s_0 = 1; S(f) = 1$
 - thick curve: $\text{var} \left\{ \hat{S}^{(mt)}(1/4) \right\}$ vs. K
 * $K = 1$: $\text{var} \left\{ \hat{S}^{(mt)}(1/4) \right\} = S^2(f) = 1$
 * $K = N$: $\text{var} \left\{ \hat{S}^{(mt)}(1/4) \right\} = 2/N \div 0.03$
 * curve agrees with these values
 - thin curve: computed assuming
 $\text{cov} \left\{ \hat{S}^{(mt)}_j(f), \hat{S}^{(mt)}_k(f) \right\} = 0$ when $j \neq k$

- thin vertical line marks Shannon number $2NW = 8$

- two curves agree closely for $K \leq 2NW$

- variance decreases slowly for $K > 2NW$
 (bias then can be bad for nonwhite processes)
Quadratic Spectral Estimators: I

• provides important motivation for multitapering

• let X_1, \ldots, X_N be portion of real-valued stationary process with mean 0; sdf $S(\cdot)$; acvs $\{s_\tau\}$

• for fixed f, define $Z_t \equiv X_t e^{-i2\pi ft} \Delta t$

• Exer. [5.7a]: $\{Z_t\}$ stationary with $S_Z(f') = S(f+f')$
 and $s_{\tau,Z} = s_{\tau} e^{-i2\pi f \Delta t}$

• note: $S_Z(0) = S(f)$, so can estimate $S(f)$ by estimating $S_Z(\cdot)$ at $f = 0$

• let Z be vector with tth element Z_t

• let Z^H be its Hermitian transpose:

$$Z^H \equiv \begin{bmatrix} Z_1^*, & \ldots, & Z_N^* \end{bmatrix}$$

note: if A real-valued matrix, then $A^H = A^T$

• since $X_t X_t' \Delta t$ has same units as $S(f)$, consider

$$\hat{S}^{(q)}(f) \equiv \hat{S}^{(q)}_Z(0) \equiv \Delta t \sum_{s=1}^N \sum_{t=1}^N Z_s^* Q_{s,t} Z_t = \Delta t Z^H Q Z;$$

$Q_{s,t}$ is (s, t)th element of weight matrix Q

• $\hat{S}^{(q)}(f)$ called quadratic spectral estimator
Quadratic Spectral Estimators: II

- assumptions about $N \times N$ matrix Q:
 - $Q_{s,t}$ is real-valued
 - Q is symmetric; i.e., $Q_{s,t} = Q_{t,s}$
 - $Q_{s,t}$ does not depend on $\{Z_t\}$

- if Q positive semidefinite (psd), then $\hat{S}^{(q)}(f) \geq 0$

- three examples of quadratic estimators

 - lag window estimator (need not be psd):
 \[
 \hat{S}^{(lw)}(f) \equiv \Delta t \sum_{\tau=-(N-1)}^{N-1} w_{\tau,m} \hat{S}^{(d)}_{\tau} e^{-i2\pi f \tau \Delta t} \\
 = \Delta t \sum_{s=1}^{N} \sum_{t=1}^{N} h_s X_s h_t X_t w_{t-s,m} e^{-i2\pi f (t-s) \Delta t} \\
 = \Delta t \sum_{s=1}^{N} \sum_{t=1}^{N} Z_s^* h_s w_{t-s,m} h_t Z_t \\
 = Q_{s,t}
 \]

 - direct spectral estimator (always psd):
 \[
 \hat{S}^{(d)}(f) \equiv \Delta t \left| \sum_{t=1}^{N} h_t X_t e^{-i2\pi ft \Delta t} \right|^2 \\
 = \Delta t \sum_{s=1}^{N} \sum_{t=1}^{N} Z_s^* h_s h_t Z_t \\
 = Q_{s,t}
 \]

 - WOSA (always psd)
Quadratic Spectral Estimators: III

• goal: set Q so $\hat{S}^{(q)}(\cdot)$ unbiased & has small variance

• to get $\hat{S}^{(q)}(f) \geq 0$, assume Q is psd:
 let $K = \text{rank of } Q$ & assume $1 \leq K \leq N$

• Exer. 7.2: can write $Q = AA^T$, where

 – A is $N \times K$ real-valued matrix

 – $A^T A$ is $K \times K$ diagonal matrix

• $a_k = k$th column of A; $a_{t,k} = t$th element of a_k; then

 $\hat{S}^{(q)}(f) = \Delta t Z^H AA^T Z$

 $= \Delta t Z^H [a_1 \ a_2 \ \ldots \ a_K] [a_1^T \ a_2^T \ \ldots \ a_K^T] Z$

 $= \Delta t [Z^H a_1 \ Z^H a_2 \ \ldots \ Z^H a_K] [a_1^T Z \ a_2^T Z \ \ldots \ a_K^T Z]$

 $= \Delta t \sum_{k=1}^{K} Z^H a_k a_k^T Z = \Delta t \sum_{k=1}^{K} (a_k^T Z)^* a_k^T Z = \Delta t \sum_{k=1}^{K} |a_k^T Z|^2$

 $= \Delta t \sum_{k=1}^{K} \left| \sum_{t=1}^{N} a_{t,k} Z_t \right|^2 = \frac{\Delta t}{K} \sum_{k=0}^{K-1} \left| \sum_{t=1}^{N} \tilde{h}_{t,k} X_t e^{-i2\pi ft} \Delta t \right|^2$

where $\tilde{h}_{t,k} \equiv a_{t,k+1} \sqrt{K}$
Quadratic Spectral Estimators: IV

• conclusion: can write all psd quadratic estimators as

\[\hat{S}^{(q)}(f) = \frac{1}{K} \sum_{k=0}^{K-1} \hat{S}^{(q)}_k(f) \]

\[\hat{S}^{(q)}_k(f) \equiv \Delta t \left| \sum_{t=1}^{N} \tilde{h}_{t,k} X_t e^{-i 2\pi f t \Delta t} \right|^2 \]

• \{\tilde{h}_{t,k}\} pairwise orthogonal because \(A^T A \) diagonal

• Q: what conditions on \(Q \) ensure \(\hat{S}^{(q)}(f) \) has good bias & variance properties?

• will study line of thought leading to dpss tapers (Bronez, 1985)
First Moment of $\hat{S}^{(q)}(\cdot)$: I

- because each $\hat{S}_k^{(q)}(f)$ is a direct estimator, have

$$E\{\hat{S}^{(q)}(f)\} = \frac{1}{K} \sum_{k=0}^{K-1} E\{\hat{S}_k^{(q)}(f)\}$$

$$= \frac{1}{K} \sum_{k=0}^{K-1} \int_{f_{(N)}}^{f_{(N)}} \overline{\mathcal{H}}_k(f - f') S(f') df'$$

$$= \int_{-f_{(N)}}^{f_{(N)}} \mathcal{H}(f - f') S(f') df'$$

where

$$\overline{\mathcal{H}}_k(f) \equiv \Delta t \left| \sum_{t=1}^{N} \tilde{h}_{t,k} e^{-i2\pi ft \Delta t} \right|^2, \quad \mathcal{H}(f) \equiv \frac{1}{K} \sum_{k=0}^{K-1} \overline{\mathcal{H}}_k(f)$$

- Exer. [7.3] gives equivalent ‘time domain’ expression:

$$E\{\hat{S}^{(q)}(f)\} = \Delta t \text{tr} \left\{ Q \Sigma_Z \right\} = \Delta t \text{tr} \left\{ A^T \Sigma_Z A \right\},$$

where $\text{tr} = \text{trace}$ & $\Sigma_Z = \text{covariance matrix for } Z_t$'s
First Moment of $\hat{S}^{(q)}(\cdot)$: II

- require $\hat{S}^{(q)}(\cdot)$ be unbiased for white noise:

$$\int_{-f(N)}^{f(N)} \tilde{H}(f') df' = 1 \iff \text{tr}\{A^T A\} = 1;$$

since $\Sigma_Z = s_0 I$, trace result follows from

$$E\{\hat{S}^{(q)}(f)\} = s_0 \Delta t = \Delta t \text{ tr}\{A^T \Sigma_Z A\} = \Delta t \text{ tr}\{A^T [s_0 I] A\} = s_0 \Delta t \text{ tr}\{A^T A\}$$

- using $a_{t,k+1} = \tilde{h}_{t,k}/\sqrt{K}$ & orthogonality, have

$$\text{tr}\{A^T A\} = \frac{1}{K} \sum_{k=0}^{K-1} \sum_{t=1}^{N-1} \tilde{h}_{t,k}^2, \text{ so unbiased if } \sum_{k=0}^{K-1} \sum_{t=1}^{N-1} \tilde{h}_{t,k}^2 = K,$$

which holds under usual normalization $\sum_t \tilde{h}_{t,k}^2 = 1$

- requirement provides normalization for tapers
First Moment of $\hat{S}^{(q)}(\cdot)$: III

- for general $\{X_t\}$, can get handle on first moment by incorporating notion of resolution (key idea!)

- given resolution bandwidth $2W > 0$, seek Q’s so

$$E\{\hat{S}^{(q)}(f)\} \approx \frac{1}{2W} \int_{f-W}^{f+W} S(f') df' \equiv S(f)$$

(i.e., no longer seek $E\{\hat{S}^{(q)}(f)\} \approx S(f)$)

- rationale

 - ‘regularizes’ sdf estimation problem:
 $\overline{S}(\cdot)$ smooth to some degree; $S(\cdot)$ need not be

 - incorporates filter bandwidth in
 filtering interpretation of $S(\cdot)$ (Section 5.6)

- strategy

 - set resolution bandwidth $2W$ appropriately

 - optimize bias/variance within limitations imposed by choice of $2W$

- basically giving up finest possible resolution of $1/N \Delta t$
 to get handle on bias/variance
• with estimation problem redefined, bias is

\[b\{\hat{S}^{(q)}(f)\} \equiv E\{\hat{S}^{(q)}(f)\} - \mathcal{S}(f) \]

\[= \int_{-f(N)}^{f(N)} \overline{\mathcal{H}}(f - f')S(f') df' - \frac{1}{2W} \int_{f-W}^{f+W} S(f') df' \]

\[= \int_{f-W}^{f+W} \left[\overline{\mathcal{H}}(f - f') - \frac{1}{2W} \right] S(f') df' \]

\[+ \int_{f' \not\in [f-W,f+W]} \overline{\mathcal{H}}(f - f')S(f') df' \]

\[\equiv b^{(l)}\{\hat{S}^{(q)}(f)\} + b^{(b)}\{\hat{S}^{(q)}(f)\} \]

local bias broad-band bias

• to bound bias terms, assume \(S(\cdot) \) bounded by \(S_{\text{max}} \); i.e., \(S(f) \leq S_{\text{max}} < \infty \) for all \(f \)

• bound on magnitude of local bias:

\[\left| b^{(l)}\{\hat{S}^{(q)}(f)\} \right| \leq \int_{f-W}^{f+W} \left| \overline{\mathcal{H}}(f - f') - \frac{1}{2W} \right| S(f') df' \]

\[\leq S_{\text{max}} \int_{-W}^{W} \left| \overline{\mathcal{H}}(f'') - \frac{1}{2W} \right| df''; \]

integral gives useful measure of local bias

• local bias small if \(\overline{\mathcal{H}}(f) \approx 1/2W \) over \([-W,W]\)
Bound on broad-band bias (must be positive!):
\[b^{(b)} \{ \hat{S}^{(q)}(f) \} = \int_{f' \not\in [f-W,f+W]} \hat{\mathcal{H}}(f - f') S(f') \, df' \]
\[\leq S_{\text{max}} \int_{f' \not\in [f-W,f+W]} \hat{\mathcal{H}}(f - f') \, df' \]
\[= S_{\text{max}} \int_{f \not\in [-W,W]} \hat{\mathcal{H}}(f'') \, df'' \]
\[= S_{\text{max}} \left(\int_{-f(N)}^{f(N)} \hat{\mathcal{H}}(f''') \, df''' - \int_{-W}^{W} \hat{\mathcal{H}}(f'') \, df'' \right) \]
\[= S_{\text{max}} \Delta t \left(\text{tr} \{ A^T \Sigma^{(bl)} A \} - \text{tr} \{ A^T \Sigma^{(bl)} A \} \right) , \]
where \(\Sigma^{(bl)} \) arises from the following argument:

- suppose \(\{ X_t \} \) is band-limited white noise; i.e., has sdf

\[S^{(bl)}(f) = \begin{cases} 1, & |f| \leq W; \\ 0, & W < |f| \leq f(N), \end{cases} \]

and acvs

\[s^{(bl)}_\tau \equiv \begin{cases} 2W, & \tau = 0; \\ \sin(2\pi W \tau \Delta t)/(\pi \tau \Delta t), & \tau \neq 0. \end{cases} \]

- for this sdf (and letting \(f = 0 \) so \(Z_t = X_t \)), have

\[E \{ \hat{S}^{(q)}(0) \} = \int_{-f(N)}^{f(N)} \hat{\mathcal{H}}(0 - f') S^{(bl)}(f') \, df' \]
\[= \int_{-W}^{W} \hat{\mathcal{H}}(f'') \, df'' = \Delta t \, \text{tr} \{ A^T \Sigma^{(bl)} A \} , \]
where \((j, k)\)th element of \(\Sigma^{(bl)} \) is \(s^{(bl)}_{j-k} \).
Minimizing Broad-Band Bias Measure

• measure of broad-band bias (leakage) is thus
 \[
 \text{tr} \{A^T A\} - \text{tr} \{A^T \Sigma^{(bl)} A\}
 \]

• setting \(\text{tr} \{A^T A\} = 1\) ensures unbiasedness for white noise

• to minimize broad-band bias under this restriction,
 maximize \(\text{tr} \{A^T \Sigma^{(bl)} A\}\) subject to \(\text{tr} \{A^T A\} = 1\)

• Exer. [7.4] gives solution:
 – set \(K = 1\)
 – \(A = a_1\) is normalized eigenvector associated with largest eigenvalue \(\lambda_0(N,W)\) of \(\Sigma^{(bl)}\)
 – eigenvector is dpss of 0th order (technically: finite subsequence of dpss)
 – broad-band bias measure \(= 1 - \lambda_0(N,W)\)
 \((\lambda_0(N,W) = \text{concentration ratio})\)

• solution conflicts with variance in white noise case:
 as \(K\) increases, variance decreases
Managing Bias & Variance

- reasonable balance: use K orthonormal dpss tapers
 - broad-band bias: measure given by Exer. [7.5]:
 \[1 - \frac{1}{K} \sum_{k=0}^{K-1} \lambda_k(N,W); \]

 $\lambda_k(N,W)$ close to unity as long as $K < 2NW \Delta t$

- variance: Section 7.4 argues that approximately

 \[\hat{S}^{(mt)}(f) \equiv \frac{S(f)}{2K} \chi^2_{2K} \]

 if $S(\cdot)$ not rapidly varying over $[f - W, f + W]$;
 thus have $\text{var} \{ \hat{S}^{(mt)}(f) \} \approx S^2(f)/K$

- local bias: as K increases, local bias decreases
 (cf. Figures 340–1: $NW = 4$ with $N = 1024$
 $\Rightarrow 1/2W = N/8 = 128 \div 21 \text{ dB}$)
Adaptive Multitaper Estimation: I

- Section 7.4 gives refinement to basic multitapering (developed for dpss tapers)

- idea: weight eigenspectra adaptively according to need for leakage suppression at each f
 - if $S(f)$ relatively large, leakage not a concern
 \Rightarrow can make K large
 - if $S(f)$ relatively small, leakage is a concern
 \Rightarrow should make K small

- adaptive multitaper estimator given by
 $$\hat{S}^{(amt)}(f) \equiv \frac{\sum_{k=0}^{K-1} b_k^2(f) \lambda_k \hat{S}^{(mt)}_k(f)}{\sum_{k=0}^{K-1} b_k^2(f) \lambda_k}$$

 where $\lambda_k \approx 1 - 1/10^j$ (with $j \downarrow$ as $k \uparrow$) &
 $$b_k(f) = \frac{1}{\lambda_k + (1 - \lambda_k) \frac{s_0 \Delta t}{S(f)}} \approx \frac{1}{1 + \frac{s_0 \Delta t}{10^j S(f)}}$$

 - λ_k’s downweight higher eigenspectra (slightly)
 - $s_0 \Delta t$ = average value of $S(\cdot)$
 - $b_k(f)$ small if $10^j S(f) \ll s_0 \Delta t$
 - $b_k(f)$ large if $10^j S(f) \gg s_0 \Delta t$

- determine $b_k(f)$ using preliminary estimate of $S(\cdot)$; can iterate to refine $b_k(f)$’s if desired
Adaptive Multitaper Estimation: II

• assume
 \[\hat{S}_k^{(mt)}(f) \overset{d}{=} S(f)\chi^2_2/2 \] for each eigenspectrum
 \[\hat{S}_k^{(mt)}(f) \]’s are pairwise uncorrelated

• as before, assume \(\hat{S}^{(amt)}(f) \overset{d}{=} a\chi^2 \)

• edof argument similar to \(\hat{S}^{(lw)}(\cdot) \) & \(\hat{S}^{(WOSA)}(\cdot) \) yields

\[\nu = \frac{2 \left(E\{ \hat{S}^{(amt)}(f) \} \right)^2}{\text{var} \{ \hat{S}^{(amt)}(f) \}} \approx \frac{2 \left(\sum_{k=0}^{K-1} b_k^2(f)\lambda_k \right)^2}{\sum_{k=0}^{K-1} b_k^4(f)\lambda_k^2} \]
Example: Ocean Wave Data

- $N = 1024; \Delta t = 1/4$ second
- Figure 373a: basic multitaper estimate $\hat{S}^{(mt)}(\cdot)$
 - set $NW = 4$ (resolution not main concern)
 - maximum of 7 possible reasonable tapers, but $\hat{S}^{(mt)}_6(\cdot)$ poor at high frequencies
 - set $K = 6$, yielding $\nu = 12$ edof
 - width of crisscross = $2W$
- Figure 373b: 2nd $\hat{S}^{(mt)}(\cdot)$ (thick curve)
 - set $NW = 6$; $K = 10$ so $\nu = 20$
 - thin curve: $m = 150$ Parzen estimate (Fig. 301a) (bandwidth ≈ 0.049 Hz $\approx 2W \approx 0.047$ Hz)
 - good agreement between $\hat{S}^{(lw)}(\cdot)$ and $\hat{S}^{(mt)}(\cdot)$
- Figure 373c: adaptive estimate (thick curve)
 - $NW = 4$ with $K = 7$
 - agrees well with 373a between 0 & 1 Hz
 - more structure for $f > 1$ Hz due to $\nu \downarrow$
 (cf. Figure 373d, which plots ν vs. f)
 - thin curves: 95% confidence intervals