Problem 1 - D-separation as undirected separation. Factorization

This is the same graph from Homework 2.

a. Write a topological ordering of the nodes in V.

b. Verify the following D-separation statements by

- constructing the respective ancestral graph
- moralizing the obtained ancestral graph
- checking undirected separation in the moral ancestral graph

$B \perp H \mid E$
$B \not\perp I \mid A,D,E$

c. Write the factored expression of a joint distribution P_V over V for which this graph is an I-map.

d. Verify that $B \perp I \mid EH$ in P_V using marginalization in the factored form of P_V.

1
Problem 2 – A graph of tree-width 2

The graph \mathcal{G} below has treewidth 2. The treewidth of a graph is one less than the size of the maximum clique in that graph.

![Graph \mathcal{G}](image)

a. Find an orientation for the graph \mathcal{G}, which produces no V-structures. Denote the resulting DAG by \mathcal{G}'.

b. Write the general factored form of a distribution P for which the undirected graph is an I-map.

c. Write the general factored form of a distribution P' of which the DAG you found in question a. is an I-map.

d. The two factorizations in b,c must be equal. Find a way to group the factors in P' to obtain the factorization in P. The grouping may not be unique.

Using the grouping you found, show that the potentials of P have a probabilistic interpretation. Since there will be many potentials, it is sufficient to find a probabilistic interpretation for one potential containing variable A and for one containing the variable E.

e. Verify that \mathcal{G} is chordal by the Tarjan elimination algorithm.

f. Construct a junction tree for the graph \mathcal{G}. Is this tree unique? List its separators (with multiplicities).