Submit the code used to solve these problems through the Assignments web page. Turn in the required solutions (without the code) in class on the due date. Only the paper part of the homework is graded.

In general, I require you to write your own code. For this assignment however, there will be some exceptions, noted in the text.

Problem 1 – Maximum Likelihood estimation of the logistic density parameters

The logistic density is defined by

\[p(x; a, b) = \frac{ae^{-ax-b}}{(1 + e^{-ax-b})^2} \text{ for } x \in \mathbb{R} \]

For a given data set \(D_N \) containing \(N \) i.i.d. points sampled from \(p \), define the function \(f \) to be \(f(a, b) = -\ln p(D; a, b) \). This problem is about the numerical estimation of the Maximum Likelihood parameters of the logistic distribution. You will use the data in the file hw1-logistic-data.dat available on the Assignments web page. The file contains \(N = 2000 \) real values, in plain text format, one per line.

1. Write the formulas of the gradient and Hessian of \(f \), i.e. \(\frac{\partial f}{\partial a}, \frac{\partial f}{\partial b}, \frac{\partial^2 f}{\partial a^2}, \frac{\partial^2 f}{\partial a \partial b}, \frac{\partial^2 f}{\partial b^2} \).

2. Find the parameters \(a, b \) by minimizing the function \(f \) using the following methods:

1. Steepest descent with constant step size. Find a suitable step size by e.g. trial and error.

2. Steepest descent with line search. Use either one of: the Brent method, the Golden section algorithm, or the Armijo rule with bracketing the minimum. (OK to transcribe or to download source code for line minimization.)

3. Newton-Raphson with line search.

4. Steepest descent with constant step size again, but with a sample of size \(N' = 200 \) out of the original sample. Consider if you should use the same step size as in 2.1.
5. Stochastic gradient with diminishing step size (if we get to it in class on Thursday)

6. Optional, for extra credit: [Quasi-Newton from e.g NR] (OK to use source code for the Quasi-Newton step only)

For each of the algorithms above, plot:

- the values $f(a^k, b^k)$ versus k
- the search path $(a^k, b^k)_{k=0,1,\ldots}$ in 2D
- anything else that you find interesting.

For the plots you submit, start all the algorithms from the same initial point $a = 1$, $b = 0$. You are strongly recommended to plot the results of all methods on the same graph for better comparison (i.e all f plots on one graph, all $a^k(b^k)$ plots on another graph, etc)

Record also: the final values of $a, b, f(a, b)$ and the number of iterations to convergence for each method.

Optional, but highly recommended, as it helps you test your result: plot the data and fitted density $p(x; a, b)$ on the same graph. You are also encouraged to try different starting points and other variations to the methods and to notice the differences between outcomes without necessary submitting the work for grading.

Use the stopping criterion $||((\nabla^2 f(x^k))^{-1}\nabla f(x^k))|| \leq \epsilon = 10^{-6}$ for all experiments.

[Optional Display the level sets of f on the plot of (a^k, b^k).]

Some helping remarks

- Note that the inverse of a *symmetric* 2×2 matrix H is given by

 $$H^{-1} = \frac{1}{h_{11}h_{22} - h_{12}^2} \begin{bmatrix} h_{22} & -h_{12} \\ -h_{12} & h_{11} \end{bmatrix}$$

(1)

- The logistic density is only defined for $a > 0$. So, theoretically, this is a constrained problem. However, all the algorithms you implement and run, unless you have bugs or bad step sizes, should have no problem avoiding the “forbidden” zone. (Can you see why?)
Problem 2 – Comparison of unconstrained minimization methods. A function with non-convex level sets\(^1\)

Repeat problem 1 (only steepest descent, Newton and the optional Quasi-Newton) for the following function

\[f : \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f(x) = x_2^2 - ax_2||x||^2 + ||x||^4 \]

for \(a = 1.98\). Start from the point \(x^0 = (0.5, 0.5)\).

A simple calculation shows that \(f(x) > 0\) for \(x \neq 0\), hence the global minimum is at \(x^* = 0\). Notation \(||x||^2 = x_1^2 + x_2^2\).

Unlike the previous likelihood which is convex, this function is not, and its level sets are not convex near the origin. You will find therefore that minimizing this function of two variables is considerably harder than minimizing \(f(a, b)\) from problem 1.

\(^1\)This problem is problem 1.1.10 from B