Reading B&V chapters 2.1–2.3, 2.5, 3.1–3.3 For the problems in this homework that deal with convexity, try to find the most elegant solution. Elegant can mean that you give a short proof, based on an example in the textbook, or a property proven in the text, instead of a long proof starting from the definitions.

Problem 1 – Some sets of probability distributions. B&V problem 2.15

Only a, c, e, f, h. Give short proofs or explanations.

Problem 2 – Some functions on the probability simplex. B&V problem 3.24

Only a, b, e, f.

Problem 3 – Log-concavity

Do one of BV 3.52, 3.53

Problem 4 – Multilayer Neural Network with Backpropagation

This problem is self-contained. You do not need knowledge of Neural Networks to solve it.

Let \(g(x) = \frac{1}{1+e^{-x}} \) be the **sigmoid function**, also called the **activation function** of the neural network. Any function that is monotonically increasing and bounded can be used as activation function, but the sigmoid has additional nice computational and statistical properties.

Bring all your results to the simplest and most interpretable expression.

a. Show that \(g'(z) = g(z)(1 - g(z)) \)

b. We build a two-layer neural network with
In other words, the neural network implements the function

\[f(x) = g \left(\sum_{j=1}^{m} \beta_j z_j \right) = g \left(\sum_{j=1}^{m} \beta_j g \left(\sum_j w_{kj} x_k \right) \right) \quad (1) \]

The loss function we will use is the logit loss or log-likelihood loss which represents the log-likelihood of the class \(y \) under the logistic regression model (1). In other words, assume \(f(x) \) represents

\[f(x) = P[Y = +1 | x] \quad (2) \]

You can use the notation \(y^* = \frac{1+y}{2} \) which maps \(y \in \{-1, 1\} \) to \(y^* \in \{0, 1\} \).

c. Find the partial derivatives \(\frac{\partial L_{\text{logit}}}{\partial f} \) and \(\frac{\partial L_{\text{logit}}}{\partial z_j} \).

d. Find the partial derivative \(\frac{\partial L_{\text{logit}}}{\partial w_{kj}} \). Your result should be a function of \(y^*, f, z \).

e. Now find the partial derivative \(\frac{\partial L_{\text{logit}}}{\partial w_{kj}} \) as a function of \(y^*, x, z, \frac{\partial L_{\text{logit}}}{\partial z}, f \).

Note that in these successive steps we have derived formulas for the gradient of \(L_{\text{logit}} \) w.r.t the parameters \(\beta, w \). It is a good exercise to actually collect these formulas and write the gradient as a large vector. Another illuminating exercise is to draw a schematic of the calculation of the gradient; the schematic will have a structure similar to the original neural net.

f. The result in e. shows that the gradient w.r.t to the \(w \) parameters in the second layer can be computed as a function of gradients w.r.t variables in the first layer. Generalize this finding to a multilayer network.

Assume that the network has layers 1, 2, \ldots, \(M \) like this

\[x \equiv x^{(M)} \longrightarrow g(x^{(M)}, w^{(M)}) \longrightarrow \ldots \longrightarrow x^{(k+1)} \longrightarrow g(x^{(k+1)}, w^{(k+1)}) \longrightarrow x^{(k)} \longrightarrow \ldots \longrightarrow x^{(1)} \longrightarrow g(x^{(1)}, w^{(1)}) \longrightarrow x^{(0)} \equiv f(x). \]
In the above $x^{(k)} \in \mathbb{R}^{n_k}$, that is layer k has n_k “units” and $w^{(k+1)} \in \mathbb{R}^{n_{k+1} \times n_k}$, in other words, column j of $w^{(k+1)}$ multiplies $x^{(k+1)}$ to produce $x^{(k)}_j$. Note the slight abuse of notation for g. Let $n_0 = 1$, meaning that the output of the multilayer neural network is a scalar.

We interpret the output $f(x)$ as in equation (2) and we use the logit loss function as in question b.

Derive a recursive formula for the gradient

$$\frac{\partial L_{\text{logit}}}{\partial w^{(k+1)}}$$

as a function of variables available at layer $k + 1$ or k.

Hint: It is good to think this computation in the following way. When data point x is presented at the input, the values $x^{(k)}$ are computed recursively from $x^{(k+1)}$ in a “forward propagation” from input to output. The intermediate values are saved. Once $f(x)$ is obtained, we can compare with the true y and obtain the cost $L_{\text{logit}}(y, f(x))$. Next we need to update the parameters w, and for this we will compute the gradient. Now the gradient calculation will proceed from the output layer “backwards” towards the input layer M. At each layer the gradient is computed from the values stored during the forward pass and the values calculated at the previous layer. This is the “Backpropagation” algorithm.

Extra credit: Train a two layer neural network to solve the “circle” problem of homework 3. Initialize the w, β parameters with random values. Explain why this is a good idea. Explain how you chose m, the number of units in the bottom layer.