Problem 1 – Convex sets

1.1 If $z_{1,2} \in A + B$ then $z_{1,2} = a_{1,2} + b_{1,2}$ with $a_{1,2} \in A$, $b_{1,2} \in B$. Hence, $tz_1 + (1-t)z_2 = [ta_1 + (1-t)a_2] + [tb_1 + (1-t)b_2]$; the first term is in A and the second in B by the convexity of A, B, therefore the sum is in $A + B$.

1.2 If $z \in S_a$, then there exist $s \in S$ so that $x = z - s$ and $||x|| \leq a$. Therefore, $S_a = S + \bar{B}(0, a)$ the (closed) ball of radius a centered at the origin. Since S is convex, and the ball is convex for any norm (BV), S_a is convex.

1.3 The entropy is a concave function of p, therefore $-H(p)$ is convex, therefore the sublevel set $\{-H(p) \leq a\} = \{H(p) \geq a\}$ is convex.

1.4 The Bregman divergence is convex in y, with $d_\phi(y = x, x) = 0$ a minimum. Thus, the Bregman ball centered at x is the sublevel set $\{d_\phi(y, x) \leq a\}$, which is convex.

Problem 2 – Boosting as Minimum Relative Entropy

\[
(MRE) \quad \min_u \sum_i u_i (\ln u_i - \ln w_i^k) \quad \text{(1)}
\]

\[\text{s.t. } \sum_i z_i u_i = 0 \quad \text{(2)}\]

\[\sum_i u_i = 1, \quad \text{(3)}\]

2.1 The objective is $\sum_i u_i (\ln u_i - \ln w_i^k) = \sum_i u_i \ln u_i - \sum_i u_i \ln w_i^k$. $u \ln u$ is known to be convex, and the second sum is a linear function in u, so the
objective is convex. There are only linear equality constraints, so (MRE) is a convex optimization problem.

\[L(u, c, \nu) = \sum_i u_i (\ln u_i - \ln w_i^k) + c \sum_i z_i u_i + \nu (\sum_i u_i - 1) \]

(4)

2.2 \[L(u, c, \nu) = \sum_i u_i (\ln u_i - \ln w_i^k) + c \sum_i z_i u_i + \nu (\sum_i u_i - 1) \]

(4)

2.3 \[\frac{\partial L}{\partial u_i} = \ln u_i + 1 - \ln w_i^k + cz_i + \nu \]

(5)

It follows that \[u_i = w_i^k e^{-cz_i - \nu - 1} \]

(6)

2.4 We have \[0 = \sum_i z_i w_i^k e^{-cz_i - \nu - 1} \]

(7)

\[= \sum_{z_i = +1} w_i^k e^{-\nu - 1} + \sum_{z_i = -1} (-w_i)^k e^{-\nu - 1} \]

(8)

\[\sum_{z_i = +1} w_i^k e^c = \sum_{z_i = -1} (-w_i)^k e^{-c - \nu - 1} \]

(9)

\[c = \frac{1}{2} \ln \frac{\sum_{z_i = +1} w_i^k}{\sum_{z_i = -1} w_i^k} = \frac{1}{2} \ln \frac{1 - e_k}{e_k} \]

(10)

In the above \(e_k \) is the weighted sum of the errors of \(f_k \) and \(c \) is identical with the \(c_k \) coefficient of DISCRETEADABoost. If we plug in \(c \) in (6) and then normalize, we obtain the solution to (MRE). This solution is identical to the weight update formula for DISCRETEADABoost.

Problem 3 – General barrier function

\[\min_x f_0(x) \]

(11)

\[\text{s.t. } f_i(x) \leq 0, \; i = 1 : m \]

(12)

3.1 \(h \) is convex and increasing, and \(f_i \) is convex, which assures that \(h(f_i) \) is convex; \(f_0 \) is convex too, and \(t > 0 \). Hence, we have a linear combination of convex functions which should be convex.

3.2 Since \(x^*(t) = \min_x tf_0(x) + \phi_h(x) \), we have that the gradient of \(tf_0 + \phi_h \) vanishes at \(x^*(t) \), i.e

\[t \nabla f_0(x^*(t)) + \sum_i h'(f_i(x^*(t))) \nabla f_i(x^*(t)) = 0 \]

(13)

If we set now \(\lambda_i = h'(f_i(x^*(t))) / t \), this \(\lambda_i \) will satisfy \(\arg\min_x f_0 + \sum_i \lambda_i f_i(x) = x^*(t) \) hence it will be dually feasible, for primal value \(x^*(t) \).
3.3

\[g(\lambda) = f_0(x^*(t)) + \sum_i \lambda_i f_i(x^*(t)) \]
(14)

\[g(\lambda) \leq p^* \leq f_0(x^*(t)) \]
(15)

\[\text{gap} = f_0(x^*(t)) - g(\lambda) = \frac{1}{t} \sum_i h'(f_i(x^*(t))) f_i(x^*(t)) \]
(16)

The duality gap depends on \(u_i = f_i(x^*(t)) \). Thus we have to choose an \(h \) so that \(h'(u)u = \text{constant} \). In other words, we have to solve the differential equation

\[\frac{dh}{du} u = C \]
(17)

This is equivalent to \(dh = C \frac{du}{u} \) whose well known solution is \(h(u) = C \ln u + D \).

Problem 4 – Linearly Separable Support Vector Machine

Let \(g(\alpha) = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i^T x_j \). At the solution \((w^*, \alpha^*) \), we have that \(p^* = g(\alpha^*) \) and \(w^* = \sum_i \alpha_i^* y_i x_i \). Hence,

\[p^* = \frac{1}{2} ||w^*||^2 = \frac{1}{2} \sum_i \alpha_i \alpha_j y_i y_j x_i^T x_j \]

\[= \sum_i \alpha_i^* - g(\alpha^*) = \sum_i \alpha_i^* - p^* \]

Therefore, \(||w^*||^2 = 2p^* = \sum_i \alpha_i^* \).