1. (30 points). Define five of the following eight terms:
 (a) Absolute continuity of a signed measure \(\phi \) with respect to a measure \(\mu \), and singularity of \(\phi \) with respect to \(\mu \).
 (b) The product \(\sigma \)-field \(A \times A' \) for two measurable spaces \((\Omega, A)\) and \((\Omega', A')\).
 (c) Almost sure convergence of a sequence of random variables \(\{X_n\} \).
 (d) Independent random variables \(X_1, \ldots, X_n \) and independent events \(A_1, \ldots, A_n \).
 (e) The tail \(\sigma \)-field of a sequence of random variables \(X_1, X_2, \ldots \).
 (f) A \(\pi \)-system \(C \).
 (g) A \(\lambda \)-system \(D \).
 (h) Khintchine - equivalent sequences of random variables.

2. (30 points). Give careful statements of three of the following six theorems or results:
 (a) The first Borel-Cantelli lemma.
 (b) The Kolmogorov zero-one law.
 (c) Feller’s weak law of large numbers.
 (d) The strong law of large numbers.
 (e) The \(\pi - \lambda \) theorem.
 (f) Fatou’s lemma.
3. (30 points). Let $X : \Omega \to \mathbb{R}$ be a random variable defined on the probability space (Ω, \mathcal{A}, P), let P_X denote the induced distribution of X on $(\mathbb{R}, \mathcal{B})$, and let g be a measurable function from \mathbb{R} to \mathbb{R}.

(a) State the theorem of the unconscious statistician in this context.

(b) Sketch a proof of the theorem you stated in (a).

4. (30 points) Suppose that X and Y are independent random variables and that f and g are real-valued measurable functions from $(\mathbb{R}, \mathcal{B})$ to $(\mathbb{R}, \mathcal{B})$ such that $f(X)$ and $g(Y)$ are measurable. Suppose that $E|f(X)| < \infty$ and $E|g(Y)| < \infty$. Show that

$$E[f(X)g(Y)] = E[f(X)]E[g(Y)] \quad (1)$$

Do either 5 or 6:

5. (30 points). Suppose that X, X_1, X_2, \ldots are independent and identically distributed random variables.

(a) Show that the following identities holds: for all $\lambda > 0$

$$P(\max_{1 \leq k \leq n} |X_k| > \lambda) = P(|X| > \lambda) \sum_{k=1}^{n} P(|X| \leq \lambda)^{k-1} = 1 - P(|X| \leq \lambda)^n.$$

[Hint: For the first identity use the same type of decomposition of the event on the left side as we used in the proof of Kolmogorov’s inequality.]

(b) Use the identities in (a) to show that for $\epsilon > 0$

$$P(\max_{1 \leq k \leq n} |X_k| > n\epsilon) \begin{cases} \leq nP(|X| > n\epsilon) \\ \geq 1 - \exp(-nP(|X| > n\epsilon)). \end{cases}$$

(c) Use the results of (b) to show that $M_n \equiv n^{-1}\max_{1 \leq k \leq n} |X_k| \to_p 0$ if and only if $xP(|X| > x) \to 0$ as $x \to \infty$ (i.e. X is weak-L_1).

6. (30 points). Give an example of a distribution function F with density function f with respect to Lebesgue measure λ such that $E|X| = \infty$ but $\tau(x) \equiv xP(|X| > x) \to 0$ as $x \to \infty$. Thus if X_1, \ldots, X_n are i.i.d. F, the WLLN holds: $\overline{X}_n - \mu_n \to_p 0$ for some sequence μ_n (where $\mu_n = E(X_11_{|X_1| \leq n})$ works), but the strong law of large numbers fails: $

\limsup_n \overline{|X|} = +\infty \text{ a.s.}$
Do either 7 or 8:

7. (30 points). Suppose that X_1 and X_2 are independent Rademacher random variables, and set $X_3 = X_1 X_2$. (Thus $P(X_j = \pm 1) = 1/2$ for $j = 1, 2$.)

(a) Show that X_3 is a Rademacher random variable: $P(X_3 = \pm 1) = 1/2$.
(b) Show that each pair of X_1, X_2, X_3 are independent random variables.
(c) Show that X_1, X_2, X_3 are not independent random variables.

8. (30 points). Let (Ω, \mathcal{A}, P) denote the probability space $([0, 1], \mathcal{B} \cap [0, 1], \lambda)$ where λ is Lebesgue measure. For $n = 1, 2, \ldots$ define

\[X_n(\omega) = \begin{cases}
1, & \text{if } 0 \leq \omega < 1/3, \\
2, & \text{if } 1/3 \leq \omega < 1/3 + 2/3^n, \\
3, & \text{if } 1/3 + 2/3^n \leq \omega < 1.
\]

(a) Are the X_n’s independent?
(b) What is the tail σ–field of the X_n’s?

Do either 9 or 10:

9. (30 points). Let X_1, X_2, \ldots be i.i.d. with d.f. $F(x) = 1 - \exp(-x^\alpha)$ for $x \geq 0$ where $\alpha > 0$.

(a) Find a sequence b_n so that $\limsup_{n \to \infty} (X_n/b_n) = 1$ almost surely.
(b) Let $M_n \equiv \max_{1 \leq k \leq n} X_k$. In the case $\alpha = 1$, find a sequence of numbers c_n so that $M_n - c_n \to^d \text{“something”}$ and find the distribution of “something”.

10. (30 points). Suppose that X_1, X_2, \ldots are uncorrelated and $E(X_j^2) \leq M < \infty$ for all $j \geq 1$.

(a) Show that $\overline{X}_n - E(\overline{X}_n) \to_2 0$.
(b) Show that $\underline{X}_n - E(\underline{X}_n) \to_p 0$.
(c) Show that $n^\alpha (\overline{X}_n - E(\overline{X}_n)) \to_p 0$ for $0 < \alpha < \alpha_0$ for some α_0 (and determine α_0).