1. PfS, Exercise 2.2.1, page 28:
Suppose that $\Omega, A = (R_2, B_2)$ where B_2 denotes the $\sigma-$field generated by all open subsets of the plane. Recall that this $\sigma-$field contains all sets of the form $B \times R$ and $R \times B$ for all $B \in B$ where $B_1 \times B_2 = \{(r_1, r_2) : r_1 \in B_1, r_2 \in B_2\}$. Now define measurable transformations $X_1(r_1, r_2) = r_1$ and $X_2(r_1, r_2) = r_2$. Then define $Z_1 \equiv \sqrt{X_1^2 + X_2^2}$ and $Z_2 \equiv \text{sign}(X_1 - X_2)$ where $\text{sign}(r) = 1, 0, -1$ according as r is $> 0, = 0, < 0$. Give geometric descriptions of the $\sigma-$fields $F(Z_1)$, $F(Z_2)$, and $F(Z_1, Z_2)$.

Solution: The $\sigma-$field $F(Z_1)$ is determined by circles about the origin: if Z_1 is known, then we know that X_1 and X_2 are on a circle with radius Z_1. The $\sigma-$field $F(Z_2)$ is the finite $\sigma-$field generated by the three sets $L^+ \equiv \{(r_1, r_2) \in R^2 : r_1 < r_2\}$, $L \equiv \{(r_1, r_2) \in R^2 : r_1 = r_2\}$, and $L^- \equiv \{(r_1, r_2) \in R^2 : r_1 > r_2\}$. Thus if we know Z_2, then we know that (X_1, X_2) is either above the forty-five degree line, on this line, or below it. The $\sigma-$field $F(Z_1, Z_2)$ is determined by both the circles generating $F(Z_1)$ and the three sets generating $F(Z_2)$: if we know both Z_1 and Z_2, then we know that (X_1, X_2) is either on a half-circle of radius Z_1 above the diagonal, on the half-circle of radius Z_1 where it is intersected by the diagonal, or on the half-circle of radius Z_1 and below the diagonal.

2. PfS, Exercise 2.2.2, page 28:
Suppose that C is a $\pi-$system. Suppose that V is a vector space of functions with:
(i) $1_C \in V$ for all $C \in \mathcal{C}$.
(ii) If $A_n \in V$ satisfy $A_n \nearrow A$, then $A \in V$.
(a) Show that $1_A \in V$ for every $A \in \sigma[C]$.
(b) Show that every simple function
$$\sum_{i=1}^{m} x_i 1_{A_i} \text{ is in } V$$
whenever \(m \geq 1 \), \(x_i \in R \), and \(\sum_{1}^{m} A_i = \Omega \) with \(A_i \in \sigma[C] \).
(c) Show that \(\mathcal{V} \) contains all \(\sigma[C] \)-measurable functions.

Solution: (a) Consider the collection of sets \(\mathcal{A} = \{ A \subset \Omega : 1_A \in \mathcal{V} \} \).
For \(C \in \mathcal{C} \) we have \(1_C \in \mathcal{V} \), by hypothesis, so \(C \in \mathcal{A} \), and hence \(\mathcal{C} \subset \mathcal{A} \).
We will show that \(\mathcal{A} \) is a \(\lambda \)-system:
(1) First note that \(\Omega \in \mathcal{A} \) since \(\Omega \in \mathcal{C} \).
(2) Now suppose that \(A_n \in \mathcal{A} \) \(\nearrow \) \(A \). But then \(1_{A_n} \in \mathcal{V} \) with \(1_{A_n} \nearrow 1_A \in \mathcal{V} \) by hypothesis, so \(A \in \mathcal{A} \).
(3) Finally, suppose that \(A, B \in \mathcal{A} \) with \(A \subset B \). Then \(1_A, 1_B \in \mathcal{V} \) and \(1_B \setminus A = 1_B - 1_A \in \mathcal{V} \) since \(\mathcal{V} \) is a vector space, and hence \(B \setminus A \in \mathcal{A} \).
Thus \(\mathcal{A} \) is a \(\lambda \)-system and \(\mathcal{C} \subset \mathcal{A} \). Therefore by the \(\pi - \lambda \) theorem, \(\sigma[C] \subset \mathcal{A} \). It follows that \(1_A \in \mathcal{V} \) for all \(A \in \sigma[C] \).
(b) Since \(\mathcal{V} \) is a vector space, it follows that all simple functions of the form \(\sum_{1}^{m} x_i 1_{A_i} \) with \(x_i \in R \) and \(A_i \in \sigma[C] \), \(i = 1, \ldots, m \) are in \(\mathcal{V} \).
(c) Now suppose that \(X = X^+ - X^- \) is a \(\sigma[C] \)-measurable function.
Since all non-negative \(\sigma[C] \) measurable functions are monotone limits of simple functions and \(\mathcal{V} \) is closed under monotone limits, we conclude that \(X^+, X^- \in \mathcal{V} \), and since \(\mathcal{V} \) is a vector space, this yields \(X \in \mathcal{V} \).

3. PfS, Exercise 2.3.1, page 29:
Let \(X_1, X_2, \ldots \) denote measurable functions from \((\Omega, \mathcal{A}, \mu) \) to \((R, \mathcal{B}) \).
(a) If \(X_n \to_{a.e.} X \), then \(X = \bar{X} \) a.e.
(b) If \(X_n \to_{a.e.} X \) and \(\mu \) is complete, then \(X \) itself is measurable.

Solution: (a) Since \(X_n \to_{a.e.} X \), there is a set \(N \in \mathcal{A} \) with \(\mu(N) = 0 \) and \(X_n(\omega) \to X(\omega) \) for all \(\omega \in N^c \). Define \(Y_n = X_n 1_{N^c} \). Then the \(Y_n \)'s are measurable and \(Y_n(\omega) = X_n(\omega)1_{N^c}(\omega) \to X(\omega)1_{N^c}(\omega) \equiv \bar{X} \) for all \(\omega \in \Omega \). Since the \(Y_n \)'s are measurable and converge everywhere to \(\bar{X} \), the limit \(\bar{X} \) is measurable. Furthermore, \(\bar{X}(\omega) = X(\omega) \) for all \(\omega \in N^c \), so \(\bar{X} = X \) a.e.
(b) From part (a) we have \([\bar{X} \neq X] \subset N \). Since \(\mu \) is complete and \(\mu(N) = 0 \), it follows that \([\bar{X} \neq X] \in \mathcal{A} \) and \(\mu([\bar{X} \neq X]) = 0 \). Now for any set \(B \in \mathcal{B} \) we can write
\[
X^{-1}(B) = (X^{-1}(B) \cap [X = \bar{X}]) \cup (X^{-1}(B) \cap [X \neq \bar{X}])
= (\bar{X}^{-1}(B) \cap [X = \bar{X}]) \cup C
\]
where \(C = X^{-1}(B) \cap [X \neq \tilde{X}] \subset [X \neq \tilde{X}] \in A \) with \(\mu([X \neq \tilde{X}]) = 0 \). By completeness of \(\mu \) this yields \(C \in A \) and \(\mu(C) = 0 \). But \(X'(B) \in A \) since \(\tilde{X} \) is measurable, and \([X = \tilde{X}] \in A \), and hence we conclude that \(X^{-1}(B) \in A \). Thus \(X \) is measurable.

4. PfS, Exercise 2.3.2, page 31:
(a) Show that in general \(\rightarrow \mu \) does not imply \(\rightarrow_{a.e.} \).
(b) Give an example with \(\mu(\Omega) = \infty \) where \(\rightarrow_{a.e.} \) does not imply \(\rightarrow \mu \).

Solution: (a) Let \(\Omega = [0, 1] \), and \(\mu = \lambda \) = Lebesgue measure on \([0, 1]\).
Now let \(A_1 = [0, 1/2) \), \(A_2 = [1/2, 1) \), \(A_3 = [0, 1/3), A_4 = [1/3, 2/3) \), \(A_5 = [2/3, 1] \), \ldots . Now let \(X_n(\omega) = 1_{A_n}(\omega) \) for \(n = 1, 2, \ldots \), and let \(X(\omega) = 0 \). Now \(X_n \rightarrow \mu X = 0 \) if \(\mu([|X_n| > \varepsilon]) \rightarrow 0 \) as \(n \rightarrow \infty \) for every \(\varepsilon > 0 \). In this case, for each \(\varepsilon \in (0, 1) \) \(\mu([|X_n| > \varepsilon]) = \mu(A_n) \rightarrow 0 \) as \(n \rightarrow \infty \), so \(X_n \rightarrow_a.e. X = 0 \). However, \(X_n \rightarrow_{a.e.} X = 0 \) iff \(\mu([|X_n| > \varepsilon] \text{ i.o.}) = 0 \) for every \(\varepsilon > 0 \). But for any \(\varepsilon \in (0, 1) \) we have \(\{\omega \in \Omega : |X_n(\omega)| > \varepsilon \ \text{i.o.}\} = [0, 1] \) by construction of the intervals \(A_n \), and hence \(\mu([|X_n| > \varepsilon] \text{ i.o.}) = 1 \). Hence \(X_n \not\rightarrow_{a.e.} X \).
(b) Let \(\Omega = [0, \infty) \) with \(\mu = \lambda \) = Lebesgue measure. Set \(X_n(\omega) = 1_{[n,n+1)}(\omega) \) for \(n = 1, 2, \ldots \), and \(X(\omega) = 0 \). Now \(X_n \not\rightarrow_{a.e.} X \) and in fact, since \(X_n(\omega) = 0 \) for all \(n > \omega \), \(X_n(\omega) \rightarrow X(\omega) = 0 \) for every \(\omega \in \Omega \). But \(X_n \not\rightarrow \mu 0 \) because, for each \(\varepsilon \in (0, 1) \),
\[
\mu([|X_n| > \varepsilon]) = 1 \not\rightarrow 0.
\]

5. PfS, Exercise 2.3.3, page 32. Show that \(X_n \rightarrow \mu X \) if and only if \(X_n - X_m \rightarrow \mu 0 \).

Solution: First suppose that \(X_n \rightarrow \mu X \). Let \(\varepsilon > 0 \). Then we can choose \(N = N_\varepsilon \) so large that for \(n > N_\varepsilon \) we have \(\mu([|X_n - X| > \varepsilon/2]) \leq \varepsilon/2 \).

But then the triangle inequality yields
\[
[\varepsilon < |X_m - X_n| \leq |X_m - X| + |X - X_n|]
\subset [|X_m - X| > \varepsilon/2] \cup [|X_n - X| > \varepsilon/2],
\]
and hence
\[
\mu([|X_m - X_n| > \varepsilon])
\leq \mu([|X_m - X| > \varepsilon/2]) + \mu([|X_n - X| > \varepsilon/2]) \leq \varepsilon/2 + \varepsilon/2 = \varepsilon.
\]
Thus \(\{X_n\} \) is Cauchy in measure.

Now suppose that \(X_n - X_m \to \mu \) 0. First, choose a subsequence \(n_k \) increasing so that
\[
\mu([|X_{n_k} - X_l| > 2^{-k}]) < 2^{-k} \quad \text{for all } l > n_k.
\]

Let \(A_k \equiv [|X_{n_k} - X_{n_{k+1}}| > 2^{-k}] \). Set \(B_m \equiv \bigcup_{k=m}^{\infty} A_k \), and note that
\[
\mu(B_m) \leq \sum_{k=m}^{\infty} \mu(A_k) < \sum_{m}^{\infty} 2^{-k} = 2^{-(m-1)}.
\]

On \(B_m^c = \cap_{k=m}^{\infty} A_k^c \) we have \(|X_{n_k} - X_{n_{k+1}}| \leq 2^{-k} \) for all \(k \geq m \). Moreover, for \(n_i > n_j > m \) it follows that
\[
|X_{n_i}(\omega) - X_{n_j}(\omega)| \leq \sum_{k=j}^{\infty} |X_{n_k}(\omega) - X_{n_{k+1}}(\omega)| < 2^{-(j-1)}
\]
for \(\omega \in B_m^c \), and this implies that \(X_{n_k}(\omega) \to X(\omega) \) for all \(\omega \in C \equiv \bigcup_1^{\infty} B_m^c \) with
\[
\mu(C^c) = \mu(\cap_1^{\infty} B_m) \leq \lim \sup \mu(B_m) \leq \lim 2^{-(m-1)} = 0.
\]

Define \(X(\omega) = 0 \) for \(\omega \in C^c \); then \(X \) is measurable, and we have
\[
\mu([|X_n - X| \geq \epsilon]) \leq \mu([|X_n - X_{n_k}| \geq \epsilon/2]) + \mu([|X_{n_k} - X| \geq \epsilon/2]) \to 0
\]
as \(n \geq n_k \to \infty \). Thus \(X_n \to \mu X \).