Statistics 523, Problem Set 2
Wellner; 4/5/17

Reading: Shorack, PfS Course Notes, Chapter 10, pages 225-253;
Shorack, PfS Course Notes, Chapter 11, pages 273-287.

Due: Wednesday, April 12, 2017.

1. PfS Course Notes, Exercise 10.2.1, page 236. (Characterization of “uan”) Suppose that $\{X_{n,k} : 1 \leq k \leq n\}$ is a row-independent triangular array with $E(X_{n,k}) = 0$, $E(X_{n,k}^2) = \sigma_{n,k}^2$, normalized so that $\sigma_n^2 \equiv \sum_{k=1}^{n} \sigma_{n,k}^2 = 1$. Show that the following are equivalent:
 (a) $|X_{n,k}|$'s are uan; that is, $\max_{1 \leq k \leq n} P(|X_{n,k}| \geq \epsilon) \to 0$ for all $\epsilon > 0$.
 (b) $\max_{1 \leq k \leq n} |\phi_{nk}(t) - 1| \to 0$ uniformly on every finite interval of t's.
 (c) $\max_{1 \leq k \leq n} E(X_{n,k}^2 \wedge 1) = \max_{1 \leq k \leq n} \int (x^2 \wedge 1) dF_{nk}(x) \to 0$.

2. PfS Course Notes, Exercise 10.2.8, page 237.
 (i) Show that Lindeberg’s condition that $LF_n(\epsilon) \to 0$ for all $\epsilon > 0$ implies Feller’s condition that $\max_{1 \leq k \leq n} \sigma_{n,k}^2 / \sigma_n^2 \to 0$.
 (ii) Let X_{n1}, \ldots, X_{nn} be row independent Poisson(λ/n) random variables with $\lambda > 0$. Discuss which of the Lindeberg-Feller, Liapunov, and Feller conditions holds in this context. [The Liapunov ($2 + \delta$) condition is as follows: for some $0 < \delta \leq 1$ we have]
 \[\sum_{k=1}^{n} E|X_{nk} - \mu_{nk}|^{2+\delta} / \sigma_n^{2+\delta} \to 0. \]
 (iii) Repeat part (ii) when X_{n1}, \ldots, X_{nn} are row independent and all have the probability density $cx^{-3}(\log x)^2$ on $x \geq 3$ (for some constant $c > 0$).
 (iv) Repeat part (ii) when $P(X_{nk} = a_k) = P(X_{nk} = -a_k) = 1/2$ for row-independent X_{nk}’s. Discuss this for general a_k’s and present two or three interesting examples for which the various conditions differ (i.e. hold or fail to hold).

3. Suppose that $\{X_k : 1 \leq k < \infty\}$ are independent random variables with $P(X_k = \pm k) = 1/(2k^2)$ and (for $k \geq 2$) $P(X_k = \pm 1) = (1 - (k^{-2})/2$. Let $S_n = \sum_{k=1}^{n} X_k$.
 (a) Show that $\text{Var}(S_n)/n \to 2$.
 (b) Compute $\max_{1 \leq k \leq n} \text{Var}(X_k)/\text{Var}(S_n)$ and show that it converges to 0.
 (c) Does the Lindeberg-Feller condition hold?
 (d) Does $S_n/\sqrt{\text{Var}(S_n)} \to N(0,1)$?
4. Suppose that \(\{X_k : k \geq 1\} \) are independent random variables with
\[
P(X_k = \pm k^\alpha) = \frac{1}{6k^{2(\alpha-1)}} \quad \text{and} \quad P(X_0 = 0) = 1 - \frac{1}{3k^{2(1-\alpha)}}.
\]
Show that the Lindeberg condition holds if and only if \(\alpha < 3/2 \).

5. \(\{X_k : k \geq 1\} \) satisfies a Lindeberg condition of order \(r \) if
\[
\frac{1}{s_n^r} \sum_{k=1}^n E\{|X_k|^r 1_{|X_k| > \epsilon s_n}\} \to 0
\]
for every \(\epsilon > 0 \) where \(s_n^2 \equiv \sum_{k=1}^n \sigma_k^2 \). Suppose that \(\{X_k : k \geq 1\} \) are independent random variables with \(E(X_k) = 0 \), \(E(X_k^2) = \sigma_k^2 < \infty \). Show that if \(\{X_k\} \) satisfies a Lindeberg condition of order \(r \) for some integer \(r \geq 2 \), then \(E(S_n/s_n)^k \to EZ^k \) for each \(k = 1, 2, \ldots, r \) where \(Z \sim N(0,1) \).

6. Optional bonus problem 1: Suppose that \(\{X_k : k \geq 1\} \) are independent random variables with \(E(X_k) = 0 \), \(E(X_k^2) = \sigma_k^2 < \infty \). Suppose that \(\{X_k : k \geq 1\} \) are independent random variables with \(E(X_k) = 0 \), \(E(X_k^2) = \sigma_k^2 < \infty \), and \(S_n/s_n \to_d Z \sim N(0,1) \), and \(E\{(s_n^{-1}S_n)^{2m}\} = (2m)!/(2^m m!) \) with \(s_n^2 \equiv \sum_{k=1}^n \sigma_k^2 \).
(a) Show that \(\{X_k : k \geq 1\} \) satisfies a Lindeberg condition of order \(2m \).
(b) Suppose that \(\{X_k : k \geq 1\} \) satisfies a Lindeberg condition of order \(r > 2 \). Show that this implies that \(\sum_{k=1}^E |X_k|^r = o(s_n^r) \).

7. Optional bonus problem 2: Suppose that \(T \sim \text{Poisson}(\lambda) \). (a) Show that \((T - \lambda)/\sqrt{\lambda} \to_d Z \sim N(0,1) \) as \(\lambda \to \infty \).
(b) Suppose that \(\{X_{n,k} : k \geq 1\} \) is a triangular array of independent Poisson random variables with parameters \(\{\lambda_{n,k} : k \geq 1\} \). Suppose that \(\lambda_n \equiv \sum_{k=1}^n \lambda_{n,k} \) where \(\lambda_n \to \infty \). In view of (a) it is natural to conjecture that \(T_n \equiv \sum_{k=1}^n X_{n,k} \) satisfies \((T_n - \lambda_n)/\sqrt{\lambda_n} \to_d Z \sim N(0,1) \). Are any other conditions needed on the \(\lambda_{n,k} \)'s to prove this?