Reading: Van der Vaart, Asymp Statist, pages 211-212; Ferguson, ACLST, Chapter 2, pages 8 - 9 and problems 6 - 8, page 12. (See also Tsybakov INS, section 2.4, page 83 ff.)

Due: Wednesday, April 6, 2016

1. For two probability measures on a measurable space \((\mathcal{X}, \mathcal{A})\), let \(H(P, Q)\) and \(V(P, Q)\) be the Hellinger and total variation distances between \(P\) and \(Q\) defined by

\[
H^2(P, Q) = \frac{1}{2} \int \left(\sqrt{p} - \sqrt{q} \right)^2 d\mu \quad \text{and} \quad V(P, Q) = \frac{1}{2} \int |p - q| d\mu
\]

respectively. Here \(p = dP/d\mu\) and \(q = dQ/d\mu\) where \(\mu\) is any measure dominating both \(P\) and \(Q\) (e.g. \(\mu = P + Q\)). [Note that some authors do not include the constant factor 1/2 in the definitions of \(H^2(P, Q)\) or \(V(P, Q)\).]

(a) Show that \(H^2(P, Q) = 1 - \int \sqrt{pq} d\mu \equiv 1 - \rho(P, Q)\); here \(\rho(P, Q) = \int \sqrt{pq} d\mu \leq 1\) is known as the Hellinger affinity.

(b) Show that \(V(P, Q) = 1 - \int (p \wedge q) d\mu \equiv 1 - \eta(P, Q)\); here \(p \wedge q \equiv \min\{p, q\}\) and \(\eta(P, Q) = \int (p \wedge q) d\mu \leq 1\) is called the total variation affinity.

(c) Use (a) and (b) and problem 1 to show that \((1/2)\rho(P, Q)^2 \leq \eta(P, Q) \leq \rho(P, Q)\).

2. With the same notation as in problem 1 show that

\[
H^2(P, Q) \leq V(P, Q) \leq \sqrt{2H(P, Q)} \left(1 - 2^{-1}H^2(P, Q)\right)^{1/2}.
\]

3. Using the notation in problem 1, show that \(V(P, Q) = \sup_{A \in \mathcal{A}} |P(Q) - Q(A)|\).

(This justifies the terminology “total variation distance”, and is sometime known as Scheffe’s theorem.)

4. Consider testing the simple hypothesis \(H : X \sim P\) versus the simple alternative \(K : X \sim Q\). Let \(\phi\) be a test of \(H\) versus \(K\), and let \(a \equiv E_Q(1 - \phi)\), \(b \equiv E_P\phi\).

(a) Find a test \(\phi\) which minimizes \(a + Db\) where \(D > 0\) is a fixed number. Relate the test you find to the Bayes rule for some prior \(\Lambda = (\lambda, 1 - \lambda)\) on \(\{P, Q\}\).

(b) When \(D = 1\), relate the minimized total \(a + b\) to the Bayes risk and to the total variation distance \(V(P, Q)\) between \(P\) and \(Q\) (or \(\int (p \wedge q) d\mu\) for some dominating measure \(\mu\), e.g. \(P + Q\)).
5. (a) Suppose that \(\{p_n\} \) is a sequence of densities with respect to a dominating measure \(\mu \) that satisfies \(p_n(x) \to p_0(x) \) for all \(x \in \mathcal{X} \) where \(p_0 \) is the density corresponding to a probability measure \(P_0 \). Show that \(V(P_n, P_0) \to 0 \).
(b) Give two examples of such a sequence \(p_n \), including one in which the dominating measure \(\mu \) is Lebesgue measure on \(\mathbb{R} \) and one in which the dominating measure is counting measure on the non-negative integers.

6. **Optional bonus problem 1:** Suppose that \(X_1, \ldots, X_n \) are i.i.d. \(P \) on \((\mathcal{X}, \mathcal{A}) \), let \(\mathbb{P}_n = n^{-1} \sum_{i=1}^n \delta_{X_i} \) denote the empirical measure, and let \(\mathbb{G}_n \equiv \sqrt{n}(\mathbb{P}_n - P) \) be the empirical process. Let \(\mathcal{F} \) be a class of real valued measurable functions from \(\mathcal{X} \) to \(\mathbb{R} \) with \(\mathcal{F} \subset L_2(P) \), and let \(f_j \in \mathcal{F} \) for \(j = 1, \ldots, k \). Thus \(\mathbb{G}_n(f_j) = \sqrt{n}(\mathbb{P}_n(f_j) - P(f_j)) \) for \(j = 1, \ldots, k \). Use the multivariate CLT to show that

\[
(\mathbb{G}_n(f_1), \ldots, \mathbb{G}_n(f_k)) \to (\mathbb{G}(f_1), \ldots, \mathbb{G}(f_k)) \sim N_k(0, \Sigma_k(f, P))
\]

where \(\Sigma_k(f, P) \) is the \(k \times k \) matrix with \(i,j \)th entry given by

\[
Cov(f_i(X_1), f_j(X_1)) = P(f_if_j) - P(f_i)P(f_j)
\]

and \(\mathbb{G} \) denotes a mean zero Gaussian process with the same covariance structure as \(\mathbb{G}_n \).