Statistics 583, Problem Set 8
Wellner; 5/18/2016

Reading: Chapter 8, sections 8.1-8.4;
vanderVaart, Asymptotic Statistics, chapter 23, pages 326-340;
Wasserman, Chapters 2-3, pages 13-41.

Due: Wednesday, May 25, 2016

1. Van der Vaart (1998), problem 23.8, page 340: Suppose that \(\sqrt{n}(\hat{\theta}_n - \theta) \rightarrow_d T \) and \(\sqrt{n}(\hat{\theta}_n^* - \hat{\theta}_n) \rightarrow_d T \) in probability given the original observations. Show that, unconditionally, \(\sqrt{n}(\hat{\theta}_n - \theta, \hat{\theta}_n^* - \hat{\theta}_n) \rightarrow (S,T) \) for independent copies \(S \) and \(T \). Use this to find the unconditional limit distribution of \(\sqrt{n}(\hat{\theta}_n^* - \theta) \).

2. The expression for the jackknife variance estimator for the median, in the display (1) on page 11 (3rd line from the bottom) in chapter 8 was derived under the assumption \(n = 2m \) and that \(T(F_n) = X_{(m)} \) if \(n = 2m - 1 \), \(T(F_n) = (X_{(m)} + X_{(m+1)})/2 \) if \(n = 2m \).
 (a) Derive the first equality in (1), page 11, using this definition of the sample median.
 (b) Derive versions of the development in (1), page 11, using \(T(F) = F^{-1}(1/2) \) (strictly). Does the asymptotic result in (1) still hold? Here is some further explanation of what I mean by “strictly” here: let \(T_1(F_n) = X_{m} \) if \(n = 2m - 1 \), \(T_1(F_n) = (X_{(m)} + X_{(m+1)})/2 \) if \(n = 2m \). This is one common definition of the median, and this is the definition used in (a). Let \(T_2(F_n) = F^{-1}(1/2) \). This is my favorite definition of the median. Note that \(T_2(F_n) = T_1(F_n) \) if \(n = 2m - 1 \), but \(T_2(F_n) \neq T_1(F_n) \) if \(n = 2m \). (What is the value of \(T_2(F_n) \) in this case?) \(T_2 \) is the definition of the median to be considered in 2(b)!

3. (a) Wasserman, problem 3.8.3, page 39, modified. Show that the claimed expression for \(v_{\text{boot}} \) given in the display for this problem is incorrect and find the correct expression. Here \(v_{\text{boot}} = Var_{\mathbb{F}_n}(T_n) \) where \(T_n = X_n^2 \). [Hint: see Dodd and Korn, The American Statistician 61 (2007), 127 - 131, and especially their appendix B, pages 130-131. Apparently the formula given by Wasserman in his problem is from Shao and Tu (1995), page 10; as noted by Dodd and Korn, the expression in Shao and Tu is incorrect.]
 (b) Explain how the resulting formulas relate to how you would estimate the variance of \(X_n^2 \) via the delta method.
4. (Continuation of problem 2, problem set #7). As in problem 7.2, let \(T(F) = \int (F - F_0)^2 dF_0 \).

(a) Find the first Gateaux derivative at \(T(F) \) at \(F \neq F_0 \).

(b) Find the influence function \(\psi_F \) of \(T(F) \) at \(F \neq F_0 \) and compute \(E_F \psi_F^2(X) \). Is it finite for any distribution function \(F \)?

(c) Show that \(\sqrt{n}(T(F_n) - T(F)) \rightarrow_d N(0, A^2) \) for some \(A^2 < \infty \) and find \(A^2 \).

(d) What does the limit theorem in (c) have to do with approximations of the power of the CvM statistics for testing \(H : F = F_0 \) versus \(K : F \neq F_0 \)?

(e) How would you use the bootstrap to estimate \(A^2 \)?

5. Optional bonus problem 1: Silverman (1981, 1983; see the course hand-out page for copies of these two papers) proposed a test for the number of modes of a density. This test is discussed on pages 227-232 of Efron and Tibshirani (1998), An Introduction to the Bootstrap. Silverman’s proposed test goes as follows: let \(\hat{p}_n(\cdot; b) \) be the kernel estimator of \(p \) based on a standard Gaussian kernel \(k \); i.e. \(k(v) = \phi(v) \) where \(\phi \) is the standard Gaussian density \(\phi(v) = (2\pi)^{-1/2} \exp(-v^2/2) \). [Use of a Gaussian kernel is crucial in Silverman’s test!] As \(b \) increases the density estimator \(\hat{p}_n(\cdot; b) \) becomes smoother and has fewer modes. In fact for a Gaussian kernel, the number of modes is a monotone non-increasing function of the bandwidth \(b \). See Figure 16.2 on page 228 of Efron and Tibshirani (1998) for an illustration of this. Consider testing \(H_0 : p \) has one mode versus \(H_1 : p \) has 2 or more modes. Since the number of modes decreases as \(b \) increases, there is a smallest value of \(b \) such that \(\hat{p}(\cdot; b) \) has one mode. Call this \(\hat{b}_1 \). Now we use \(\hat{p}_n(\cdot; \hat{b}_1) \) as the estimated null distribution for our test of \(H_0 \) versus \(H_1 \). As noted in Efron and Tibshirani, it seems reasonable to adjust \(\hat{p}_n(\cdot; \hat{b}_1) \) slightly to adjust for the fact noted in problem 3(d) above that the variance under \(\hat{p}_n(\cdot; b_1) \) is somewhat larger than the sample variance. We call the resulting estimator \(\hat{q}_n(\cdot; \hat{b}_1) \). A reasonable test statistic is \(\hat{b}_1 \): if this is large, then a greater amount of smoothing is required to obtain one mode, and this supports the alternative hypothesis. Now the test is carried out via bootstrap resampling from the fitted model under the null hypothesis; see Efron and Tibshirani (1998) for details.

(a) Describe this bootstrap testing procedure from the perspective of estimation of some functional of the true distribution and our discussion in sections 8.2 and 8.3, distinguishing carefully between the ideal bootstrap and the Monte-Carlo implementation of the bootstrap.

(b) Verify that the resampling scheme outlined on page 232 of Efron and Tibshirani accomplishes the desired adjustment of \(\hat{p}_n(\cdot; \hat{b}_1) \) so that the resulting \(\hat{q}_n(\cdot; \hat{b}_1) \) has variance very nearly equal to the sample variance.

(c) Find at least one alternative test of multimodality of a univariate density \(p \) that has been proposed since (1983).
6. Optional bonus problem 2: (Hard!) On page 12, line 4 of Chapter 8 of the lecture notes, it is claimed that if $E_F |X|^r < \infty$ for some $r > 0$ and $f(F^{-1}(1/2)) > 0$, then for the median function $T(F) = F^{-1}(1/2)$ we have

$$n\text{Var}_F(T(F_n)) \to \frac{1/4}{f^2(F^{-1}(1/2))}.$$

Prove (or disprove) this claim.