Reading: Chapter 8, sections 8.1-8.4;
van der Vaart, Asymptotic Statistics, chapter 23, pages 326 - 340;
Wasserman, Chapters 2-3, pages 13-41.
Due: Wednesday, June 1, 2016

1. Suppose that \(T(F) = \text{Var}_F(X) \) so that \(T_n \equiv T(F_n) = n^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \). Show that the jackknife estimate of the variance \(\sigma_n^2(F) \equiv \text{Var}_F(T_n) \) is

\[
\hat{\text{Var}} = \frac{n^2}{(n-1)^3} (\hat{\mu}_4 - \hat{\mu}_2^2)
\]

where \(\hat{\mu}_k \equiv n^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^k \) for \(k = 1, 2, \ldots \). Hence, assuming that \(EX^4 < \infty \), the jackknife estimate of variance is consistent for this \(T \):

\[
n\hat{\text{Var}} \rightarrow_p \mu_4 - \mu_2^2 = \mu_2^2 \left(2 + \frac{\mu_4}{\mu_2^2} - 3 \right) = T_2(F)(2 + \gamma_2).
\]

2. (a) Wasserman, problem 3.8.9, page 40: Let \(X_1, \ldots, X_n \) be \(n \) distinct observations (no ties). Let \(X_1^*, \ldots, X_n^* \) denote a bootstrap sample (from the empirical d.f. \(F_n \) of the \(X_i \)'s), and let \(\bar{X}_n^* = n^{-1} \sum_{i=1}^{n} X_i^* \). Find: \(E\{X_n^*|X_1, \ldots, X_n\}, \text{Var}(\bar{X}_n^*|X_1, \ldots, X_n), \text{Var}(\bar{X}_n) \).
(b) Wasserman, problem 3.8.13, page 41: Let \(X_1, \ldots, X_n \) be \(n \) distinct observations (no ties). Let \(X_1^*, \ldots, X_n^* \) denote a bootstrap sample (from the empirical d.f. \(F_n \) of the \(X_i \)'s). Let \(G \) denote the marginal distribution of \(X_i^* \). Note that \(G(x) = P(X_i^* \leq x) = E\{P(X_i^* \leq x|X_1, \ldots, X_n) = E\{F_n(x) \} = F(x) \). So it appears that \(X_i^* \) and \(X_i \) have the same distribution. But in (a) we showed that \(\text{Var}(\bar{X}_n) \neq \text{Var}(\bar{X}_n^*) \). Explain.

3. Consider a \(V \)-functional of order \(r = 2 \) given by \(T(P) = \int \int h(x, y) dP(x) dP(y) \) where \(h \) is permutation symmetric. Find the jackknife estimate of bias for the (\(V \)-statistic) estimator \(T(\mathbb{P}_n) \) of \(T(P) \). Also find the jackknife estimator of \(T(P) \).

4. Wasserman, problem 3.8.11, page 41: Let \(X_1, \ldots, X_n \) be i.i.d. Uniform(0, \(\theta \)). The MLE of \(\theta \) is \(\hat{\theta}_n \equiv X_{(n)} = \max\{X_1, \ldots, X_n\} \).
 (a) Find the distribution of \(\hat{\theta}_n \) and the exact and limiting distribution of \(n(\theta - \hat{\theta}_n) \).
 (b) Compare the true and limiting distribution of \(n(\theta - \hat{\theta}_n) \) with the parametric and nonparametric bootstrap distributions when \(\theta = 1 \).
 (c) Show that for the parametric bootstrap \(P(\hat{\theta}_n^* = \hat{\theta}_n) = 0 \) but for the nonparametric bootstrap \(P(\hat{\theta}_n^* = \hat{\theta}_n) = 1 - (1 - 1/n)^n \rightarrow 1 - e^{-1} \approx .632 \ldots \).
5. **Optional bonus problem 1:** (Bootstrapping a linear regression model a simple way.) Consider bootstrapping a linear regression model

\[Y_i = x_i^T \beta + \epsilon_i, \quad i = 1, \ldots, n \]

where the \(\epsilon_i \) are i.i.d. mean 0, finite variance, and the \(x_i \) are given \(p \)-dimensional vectors, such that there is no constant term in the regression.

(a) Show that the estimated residuals \(\hat{\epsilon}^T = (\hat{\epsilon}_1, \ldots, \hat{\epsilon}_n) \) satisfy \(\hat{\epsilon} - \epsilon = -H\epsilon \)

where \(H = X(X^T X)^{-1}X^T \) is the “hat matrix” (i.e. the projection matrix onto the column space of \(X \)).

(b) Suppose that \(\hat{\epsilon}_1^*, \ldots, \hat{\epsilon}_n^* \) is a bootstrap sample (with replacement) from \(\{\hat{\epsilon}_1, \ldots, \hat{\epsilon}_n\} \). Show that

\[
E^* \left(n^{1/2}(\hat{\beta}^* - \hat{\beta}) \right) = (\frac{1}{n}X^T X)^{-1}(\frac{1}{n}X^T 1)Z_n
\]

where \(Z_n = n^{-1/2} \sum_{i=1}^n \hat{\epsilon}_i \).

(c) Show that if \(\max_{1 \leq i \leq n} h_{ii} \rightarrow 0 \), and \(n^{-1}X^T X \rightarrow V \), a positive definite matrix, then

\[
\sqrt{n}(\hat{\beta} - \beta) \rightarrow_d N_p(0, \sigma^2 V^{-1})
\]

[This is a variant of the result we established in 581 via the Lindeberg - Feller CLT.]

(d) Find the mean and variance of \(Z_n \).

(e) Suppose that:

(i) \(n^{-1}X^T X \rightarrow V \), a positive definite matrix;

(ii) \(X^T 1/n \rightarrow h \) with \(h^T V^{-1} h < 1 \);

(iii) \(\max_{1 \leq i \leq n} h_{ii} \rightarrow 0 \) where \(h_{ii} \) are the diagonal elements of the hat matrix \(H \).

Show that if (i) - (iii) hold, then the bootstrap fails in the sense that the random variable \(Z_n \) in (b) converges in distribution to a proper random variable rather than to zero.

Hint: show that (iii) implies that \(\max_{1 \leq i \leq n} |c_{ni}| \rightarrow 0 \) where \(c = n^{-1/2}(I - H)1 \).

6. **Optional bonus problem 2:** Suppose now that the bootstrap residuals are drawn from the collection of centered residuals \(\hat{\epsilon} - 1(1^T \hat{\epsilon}/n) \) Compute \(E^*(\sqrt{n}(\hat{\beta}^* - \hat{\beta})) \) and \(E^*(\sqrt{n}(\hat{\beta}^* - \hat{\beta}))^2 \) for this bootstrap resampling scheme.