Due: Thursday, April 28, 2016

1. (a) The moment condition for (the extended form of) Bernstein’s inequality is:
 \[E|X_i|^k \leq k!c^{k-2}v_i/2 \] for every \(k \geq 2 \) and all \(i \leq n \) and constants \(c > 0 \) and \(v_i \).
 Show that this holds if we have
 \[
 E \left(e^{X_i/c} - 1 - \frac{|X_i|}{c} \right) c^2 \leq \frac{1}{2} v_i.
 \]
 On the other hand, show that if the moment condition holds, then the previous display holds with \(c \) replaced by \(2c \) and \(v_i \) replaced by \(2v_i \).
 (b) Show that the moment condition of Bernstein’s inequality holds with
 \(c = M/3 \) if \(|X_i| \leq M \) with probability 1.

2. BLM, page 79, problem 3.7: Show that the conditional Rademacher average \(Z \)
satisfies the self-bounding property. Here \(Z \) is defined by
 \[
 Z \equiv E \left\{ \max_{1 \leq j \leq d} \sum_{i=1}^n \epsilon_i X_{i,j} | X_1, \ldots, X_n \right\}
 \]
 where \(X_1, \ldots, X_n \) are independent random variables taking values in \([-1, 1]^d\) and
 \(\epsilon_1, \ldots, \epsilon_n \) are independent Rademacher random variables which are independent of the \(X_i \)’s

3. BLM, page 78, problem 3.5: Consider the class \(F \) of functions \(f : \mathbb{R}^n \to \mathbb{R} \) that
 are Lipschitz with respect to the \(\ell^1 \) distance: i.e.
 \[
 |f(x_1, \ldots, x_n) - f(y_1, \ldots, y_n)| \leq \sum_{i=1}^n |x_i - y_i|.
 \]
 Let \(X = (X_1, \ldots, X_n) \) be a vector of independent random variables with finite variance.
 Use the Efron - Stein inequality to show that the maximal value of
 \(\text{Var}(f(X)) \) over \(f \in F \) is attained by the function \(f(x) = \sum_{i=1}^n x_i \).
 (This is from Bobkov and Houdré (1996).)

4. BLM, page 114, problem 4.11: prove that for any fixed probability measure \(P \) on \(\mathcal{X} \), the function \(Q \mapsto D(Q \| P) \) is convex on the set of probability distributions
 over \(\mathcal{X} \). Hint: Use the duality representation.
5. BLM, page 114, problem 4.13: Let Z be a real-valued random variable. Recall that $\psi_Z(\lambda) = \log E e^{\lambda Z}$ for $\lambda \in \mathbb{R}$. Let $\psi^*(t) = \sup_{\lambda \in \mathbb{R}} \{\lambda t - \psi_{Z-E(Z)}(\lambda)\}$. Prove that for all $t > 0$

$$\psi^*(t) = \inf \{D(Q\|P) : E_Q(Z) - E(Z) \geq t\}.$$

6. **Bonus problem:** BLM, page 115, problem 4.17: Let C be a convex body (a compact convex set with nonempty interior) in \mathbb{R}^n, and let P be the uniform probability distribution over C. Prove Borell’s lemma that states the following: if A is a symmetric convex subset of C with $P(A) > 1/2$, then for any $t > 1$,

$$P((tA)^c) \leq P(A) \left(\frac{1 - P(A)}{P(A)}\right)^{(t+1)/2}.$$

Hint: Prove first that for $t > 1$

$$\frac{2}{t+1} (tA)^c + \frac{t-1}{t+1} A \subset A^c$$

where $A^c = C \setminus A = C \cap A^c$ where the complement on the right side is the usual complement in \mathbb{R}^n. Then use the Brunn-Minkowski inequality. (This is an example of the concentration of measure phenomenon: note that the inequality does not depend on the ambient dimension n.)