Nonparametric estimation under Shape Restrictions

Jon A. Wellner

University of Washington, Seattle

Statistical Seminar, Frejus, France
August 30 - September 3, 2010
Outline: Five Lectures on Shape Restrictions

• **L1**: Monotone functions: maximum likelihood and least squares
• **L2**: Optimality of the MLE of a monotone density (and comparisons?)
• **L3**: Estimation of convex and k–monotone density functions
• **L4**: Estimation of log-concave densities: $d = 1$ and beyond
• **L5**: More on higher dimensions and some open problems
Outline: Lecture 1

- A: Maximum likelihood and least squares estimators (and more?)
- B: Switching: a simple key result
- C: Limit theory via switching and argmax continuous mapping
- D: Complements: Pollard’s localization method ??
- E: Other nonparametric function estimation problems ??
A. Maximum likelihood, monotone density

- **Model:** $\mathcal{D} \equiv$ all monotone decreasing densities (wrt Lebesgue measure) on $\mathbb{R}^+ = (0, \infty)$.

- **Observations:** X_1, \ldots, X_n i.i.d. $f_0 \in \mathcal{D}$.

- **MLE:** $\hat{f}_n \equiv \arg\max_{f \in \mathcal{D}} \left\{ \sum_{i=1}^{n} \log f(X_i) \right\}$

- **LSE:** $\tilde{f}_n \equiv \arg\min_{f \in \mathcal{D}} \psi_n(f)$ where

 $\psi_n(f) \equiv \frac{1}{2} \int_0^\infty f^2(x)dx - \int_0^\infty f(x)d\mathbb{F}_n(x)$

 $= \frac{1}{2} \left\{ \int_0^\infty (f^2(x) - f_n(x))^2dx - \int_0^\infty f_n^2(x)dx \right\}$

 if \mathbb{F}_n had density f_n (which it doesn’t, of course!).
A. Maximum likelihood, monotone density

Theorem. (a) $\hat{f}_n = \tilde{f}_n$ exists and is unique. It is a piecewise constant function with jumps (down) only at the order statistics. (b) The MLE \hat{f}_n is characterized by the “Fenchel” conditions

$$F_n(x) \leq \tilde{F}_n(x) \equiv \int_0^x \hat{f}_n(t)dt \quad \text{for all } x \geq 0, \text{ and}$$
$$F_n(x) = \tilde{F}_n(x) \quad \text{if and only if } \hat{f}_n(x-) > \hat{f}_n(x+).$$

The equality condition in the last display can be rewritten as

$$\int_0^\infty (\tilde{F}_n(x) - F_n(x))d\hat{f}_n(x) = 0.$$

(c) Geometrically, \hat{f}_n is the left-derivative at x of the least concave majorant \tilde{F}_n of F_n.
A. Maximum likelihood, monotone density
A. Maximum likelihood, monotone density
A. Maximum likelihood, monotone density

Proof; Existence and Uniqueness: The log-likelihood function (divided by n) is $L_n(f) = \mathbb{P}_n \log f = n^{-1} \sum_{i=1}^{n} \log f(X_i)$. If we define \tilde{f} by $\tilde{f}(x) = C \sum_{i=1}^{n} f(X(i)) 1_{(X(i-1), X(i])}(x)$ where C is a normalizing constant to make $\int_{0}^{\infty} \tilde{f}(x)dx = 1$, then

$$L_n(\tilde{f}) = \log C + L_n(f) \geq L_n(f)$$ since

$$1 = \int_{0}^{\infty} \tilde{f}(x)dx = C \sum_{i=1}^{n} (X(i)-X(i-1))f(X(i)) \leq C \int_{0}^{X(n)} f(x)dx \leq C.$$

Thus the MLE \hat{f}_n can be taken to be a histogram type estimator with breaks only at the order statistics.

Existence follows since we can restrict the maximization of L_n to the compact set

$$\mathcal{D}_M \equiv \{ f \in \mathcal{D} : f \text{ a histogram, } f(0) \leq M, f(M) = 0 \}$$

for $M = \max\{1/X(1), 2X(n)\}$.

Statistical Seminar, Fréjus 1.7
A. Maximum likelihood, monotone density

Proof; Characterization: Let \(\mathcal{M} = \{ f : f(x) \geq 0 \text{ for all } x \geq 0, f \downarrow \} \). Then \(\mathcal{D} \subset \mathcal{M} \) and \(\mathcal{M} \) is a convex cone. We replace maximization of the log-likelihood

\[
\mathbb{P}_n \log f = n^{-1} \sum_{i=1}^{n} \log f(X_i) = \int_{0}^{\infty} \log f(x) dF_n(x)
\]

over \(\mathcal{D} \) by minimization of

\[
\ell_n(f) \equiv -\mathbb{P}_n \log f + \int_{0}^{\infty} f(x) dx \text{ over } \mathcal{M}.
\]

Suppose \(\hat{f}_n \) minimizes \(-\mathbb{P}_n \log f\) over \(\mathcal{D} \). Then \(\hat{f}_n \) minimizes \(\ell_n(f) \) over \(\mathcal{M} \). To see this, let \(g \in \mathcal{M} \) with \(\int_{0}^{\infty} g(x) dx = c \in (0, \infty) \). Since \(g/c \in \mathcal{D} \)

\[
\ell_n(g) - \ell_n(\hat{f}_n) = -\mathbb{P}_n \log (g/c) - \log c + c + \mathbb{P}_n \log \hat{f}_n - 1
\]

\[
= \ell_n(g/c) - \ell_n(\hat{f}_n) - \log c - 1 + c
\]

\[
\geq 0 + 0 = 0
\]

since \(g/c \in \mathcal{D} \) and \(c - 1 \geq \log c \). Equality holds if \(g = \hat{f}_n \). Thus \(\hat{f}_n \) maximizes \(\ell_n \) over \(\mathcal{M} \).
A. Maximum likelihood, monotone density

Now for $g \in \mathcal{M}$ and $\epsilon > 0$ consider

$$\ell_n(\hat{f}_n + \epsilon g) \geq \ell_n(\hat{f}_n).$$

Thus

$$0 \leq \lim_{\epsilon \downarrow 0} \frac{\ell_n(\hat{f}_n + \epsilon g) - \ell_n(\hat{f}_n)}{\epsilon}$$

$$= - \int_{0}^{\infty} \frac{g}{\hat{f}_n} d\hat{F}_n + \int_{0}^{\infty} g(x) dx$$

$$= - \int_{0}^{\infty} \frac{1_{[0,y]}(x)}{\hat{f}_n(x)} d\hat{F}_n(x) + y \text{ for all } y > 0$$

by taking $g(x) = 1_{[0,y]}(x)$

$$= y - \int_{0}^{y} \frac{1}{\hat{f}_n(x)} d\hat{F}_n(x)$$

$$= \int_{0}^{y} \frac{1}{\hat{f}_n} d(\hat{F}_n - \hat{F}_n) \quad (1)$$
A. Maximum likelihood, monotone density

If \(y \) satisfies \(\hat{f}_n(y-) > \hat{f}_n(y+) \), then the function \(\hat{f}_n + \epsilon 1_{[0,y]} \in \mathcal{M} \) for \(\epsilon < 0 \) and \(|\epsilon| \) sufficiently small. Repeating the argument for \(\epsilon < 0 \) and these values of \(y \) yields

\[
0 = \int_0^y \frac{1}{\hat{f}_n} d(\hat{F}_n - F_n) \quad \text{if} \quad \hat{f}_n(y-) > \hat{f}_n(y+). \tag{2}
\]

Since \(\hat{f}_n \) is piecewise constant, the inequalities and equalities in \((1)\) and \((2)\) can be rewritten as claimed:

\[
F_n(x) \leq \hat{F}_n(x) \equiv \int_0^x \hat{f}_n(t) dt \quad \text{for all} \quad x \geq 0, \quad \text{and}
\]

\[
F_n(x) = \hat{F}_n(x) \quad \text{if and only if} \quad \hat{f}_n(x-) > \hat{f}_n(x+).
\]

Now consider the LSE \(\tilde{f}_n \). Suppose that \(\tilde{f}_n \) minimizes

\[
\psi_n(f) = \frac{1}{2} \int_0^\infty f^2(x) dx - \int_0^\infty f d\hat{F}_n
\]

over \(\mathcal{M} \).
A. Maximum likelihood, monotone density

Then for $g \in M$ and $\epsilon > 0$ we have $\psi_n(\tilde{f}_n + \epsilon g) \geq \psi_n(\tilde{f}_n)$ and hence

$$0 \leq \lim_{\epsilon \downarrow 0} \frac{\psi_n(\tilde{f}_n + \epsilon g) - \psi_n(\tilde{f}_n)}{\epsilon}$$

$$= \int_{0}^{\infty} g(x) \tilde{f}_n(x) dx - \int_{0}^{\infty} g dF_n = \int_{0}^{\infty} g d(\tilde{F}_n - F_n)$$

$$= \int_{0}^{y} d(\tilde{F}_n - F_n) = \tilde{F}_n(y) - F_n(y) \text{ for all } y > 0 \quad (3)$$

by choosing $g(x) = 1_{[0,y]}(x)$ for $x \geq 0$, $y > 0$. If $\tilde{f}_n(y-) > \tilde{f}_n(y+)$, then $\tilde{f}_n + \epsilon 1_{[0,y]} \in M$ for $\epsilon < 0$ with $|\epsilon|$ small, so repeating the argument for $\epsilon < 0$ and these y’s yields

$$\tilde{F}_n(y) - F_n(y) = 0 \text{ if } \tilde{f}_n(y-) > \tilde{f}_n(y+). \quad (4)$$

But (3) and (4) give exactly the same characterization of \tilde{f}_n derived above for \hat{f}_n. Thus $\tilde{f}_n = \hat{f}_n$ in this case.
B. Switching: a simple key result

- Groeneboom (1985), Prakasa Rao (1969)?
- Introduce first in the context of \(\hat{f}_n \)
- More general version.

Switching for \(\hat{f}_n \): Define

\[
\hat{s}_n(a) \equiv \arg\max_{s \geq 0} \{ F_n(s) - as \}, \quad a > 0
\]

\[
\equiv \sup \{ s \geq 0 : F_n(s) - as = \sup_{z \geq 0} (F_n(z) - az) \}.
\]

Then for each fixed \(t \in (0, \infty) \) and \(a > 0 \)

\[
\left\{ \hat{f}_n(t) < a \right\} = \left\{ \hat{s}_n(a) < t \right\}.
\]
B. Switching: a simple key result
B. Switching: a simple key result

More general result: Suppose $\Phi : D \subset \mathbb{R} \to \mathbb{R}$ where D is closed. Let

$$\hat{\Phi}(x) \equiv \text{least concave majorant of } \Phi$$

$$= \inf \{ g(x) | g : D \to \mathbb{R}, g \text{ closed, } g \text{ concave, } g \geq \Phi \}.$$

Let $\hat{\phi}_L$ and $\hat{\phi}_R$ denote the left and right derivatives of $\hat{\Phi}$. Define

$$\kappa_L(y) \equiv \arg\max_x \{ \Phi(x) - yx \}$$

$$= \inf \{ x \in D : \Phi(x) - yx = \sup_{z \in D} (\Phi(z) - yz) \}.$$

$$\kappa_R(y) \equiv \arg\max_x \{ \Phi(x) - yx \}$$

$$= \sup \{ x \in D : \Phi(x) - yx = \sup_{z \in D} (\Phi(z) - yz) \}.$$
B. Switching: a simple key result

Theorem. Suppose that Φ is a proper upper-semicontinuous real-valued function defined on a closed subset $D \subset \mathbb{R}$. Then $\hat{\Phi}$ is proper if and only if $\Phi \leq l$ for some linear function l on D. Furthermore, if $\text{conv}(\text{hypo}(\Phi))$ is closed, then the functions κ_L and κ_R are well defined and the following switching relations hold:

$$\hat{\phi}_L(x) < y \quad \text{if and only if} \quad \kappa_R(y) < x;$$
$$\hat{\phi}_R(x) \leq y \quad \text{if and only if} \quad \kappa_L(y) \leq x.$$

We will apply this theorem with Φ taken to be various random processes, including:

- $\Phi = \mathbb{U}$, a Brownian bridge process on $[0,1]$.
- $\Phi = aW(h) - bh^2$ for $a, b > 0$ and W two-sided Brownian motion.
B. Switching: a simple key result

Reminder:

\[\text{hypo}(f) = \{ (x, \alpha) \in \mathbb{R}^d \times \mathbb{R} : \alpha \leq f(x) \} , \]

\[\text{conv}(C') = \left\{ \sum_{i=1}^{k} \lambda_i x_i : x_i \in C, \lambda_i \geq 0, \sum_{1}^{k} \lambda_i = 1, k \geq 0 \right\}. \]

\(f \) is upper semicontinuous at all \(x \in \mathbb{R}^d \) if and only if hypo\((f) \) is closed.
C. Limit theory via switching and argmax CM

Two illustrative cases:

- Case 1: $f_0(x) = 1_{[0,1]}(x)$ (degenerate mixing, $G' = \delta_1$).
- Case 2: f_0 with $f_0(x_0) > 0$, $f'_0(x_0) < 0$. (Strictly decreasing at x_0).

Case 1: Groeneboom (1983), Groeneboom and Pyke (1983). If $f_0(x) = 1_{[0,1]}(x)$, then for $0 < x_0 < 1$,

$$S_n(x_0) \equiv \sqrt{n}(\hat{f}_n(x_0) - f_0(x_0)) \to_d S(x_0)$$

where S is the left-derivative of the least concave majorant C of a standard Brownian bridge process U on $[0,1]$.
C. Limit theory via switching and argmax CM

Proof, Case 1: By the switching relation

\[P(\sqrt{n}(\hat{f}_n(x_0) - f_0(x_0)) < t) \]
\[= P(\hat{f}_n(x_0) < f_0(x_0) + n^{-1/2}t) \]
\[= P(\hat{s}_n(f_0(x_0) + n^{-1/2}t) < x_0) \]
\[= P(\text{argmax}_h \{F_n(x_0 + h) - (f_0(x_0) + n^{-1/2}t)(x_0 + h)\} < 0) \]
\[= P(\text{argmax}_h \mathbb{Z}_n(h) < 0) \quad (5) \]

where, since \(f_0(x_0) = 1 \) implies that \(xf_0(x_0) = x_0 = F(x_0), \)

\[\mathbb{Z}_n(h) \equiv n^{1/2}(F_n(x_0 + h) - F(x_0) - hf_0(x_0) - t(x_0 + h)n^{-1/2}) \]
\[= n^{1/2}(F_n(x_0 + h) - F(x_0 + h)) \]
\[+ n^{1/2}(F(x_0 + h) - F(x_0) - hf_0(x_0)) - t(x_0 + h) \]
\[= \mathbb{U}_n(x_0 + h) - t(x_0 + h) \]
\[\sim \mathbb{U}(x_0 + h) - t(x_0 + h) \]

where \(\mathbb{U}_n \equiv \sqrt{n}(F_n - F) \) denotes the uniform empirical process and \(\mathbb{U} \) denotes a Brownian bridge process.
Thus by the (argmax) continuous mapping theorem it follows that the right side of (5) converges to

\[P(\arg\max_h \{U(x_0 + h) - t(X_0 + h)\} < 0) \]
\[= P(\arg\max_s \{U(s) - ts\} < x_0) \]
\[= P(S(x_0) < t) \]

by the general version of the switching relation. Hence

\[\sqrt{n}(\hat{f}_n(x_0) - f_0(x_0)) \to_d S(x_0). \]

This one-dimensional convergence extends straightforwardly to convergence of the finite-dimensional distributions, and (by monotonicity) to convergence in the Skorokhod topology on \(D[a, 1 - a] \) for each fixed \(a \in (0, 1/2) \).

Exercise 1. \(S_n \sim S \) in \(L_1([0, 1], \lambda) \) with \(\lambda = \) Lebesgue measure; this also holds in \(L_p([0, 1], \lambda) \) for \(1 \leq p < 2 \), but not in \(L_2([0, 1], \lambda) \).
C. Limit theory via switching and argmax CM
C. Limit theory via switching and argmax CM
C. Limit theory via switching and argmax CM

Case 2: Prakasa Rao (1969), Groeneboom (1985). If \(f_0(x_0) > 0, \ f'_0(x_0) < 0, \) and \(f'_0 \) is continuous at \(x_0, \) then

\[
S_n(x_0, t) \equiv n^{1/3}(\hat{f}_n(x_0 + n^{-1/3} c_0 t) - f_0(x_0)) \\
\rightarrow_d (2^{-1} f_0(x_0)|f'_0(x_0)|)^{1/3} S(t)
\]

where \(S \) is the left-derivative of the least concave majorant \(C \) of \(W(t) - t^2, \) \(W \) is a standard two-sided Brownian motion process starting at 0, and \(c_0 \equiv 4 f_0(x_0)/(f'_0(x_0))^2)^{1/3}. \) In particular:

\[
S_n(x_0) \equiv n^{1/3}(\hat{f}_n(x_0) - f_0(x_0)) \rightarrow_d (2^{-1} f_0(x_0)|f'_0(x_0)|)^{1/3} S(0).
\]

Proof, Case 2: By the switching relation
\[P(n^{1/3}(\hat{f}_n(x_0 + n^{-1/3}t) - f(x_0)) < y) = P(\hat{f}_n(x_0 + n^{-1/3}t) < f(x_0) + yn^{-1/3}), \]
\[= P(\hat{s}_n(f(x_0) + yn^{-1/3}) < x_0 + n^{-1/3}t) = P(\text{argmax}_v \{F_n(v) - (f(x_0) + n^{-1/3}y)v\} < x_0 + n^{-1/3}t) \]

Now we change variables \(v = x_0 + n^{-1/3}h \) in the argument of \(F_n \) and center and scale to find that the right side in the last display equals

\[P(\text{argmax}_h \{F_n(x_0 + n^{-1/3}h) - (f(x_0) + n^{-1/3}y)(x_0 + n^{-1/3}h)\} < t) = P \left(\text{argmax}_h \{F_n(x_0 + n^{-1/3}h) - F_n(x_0) - (F(x_0 + n^{-1/3}h) - F(x_0)) \right. \]
\[+ \left. F(x_0 + n^{-1/3}h) - F(x_0) - f(x_0)n^{-1/3}h - n^{-2/3}yh\} < t \right). \]

(6)

Now the stochastic term in (6) satisfies
C. Limit theory via switching and argmax CM

\[n^{2/3} \left\{ F_n(x_0 + n^{-1/3}h) - F_n(x_0) - (F(x_0 + n^{-1/3}h) - F(x_0)) \right\} \]
\[\overset{d}{=} n^{2/3 - 1/2} \left\{ U_n(F(x_0 + n^{-1/3}h)) - U_n(F(x_0)) \right\} \]
\[= n^{1/(2\cdot3)} \left\{ U(F(x_0 + n^{-1/3}h)) - U(F(x_0)) \right\} + o_p(1) \quad \text{by KMT} \]
\[\overset{d}{=} n^{1/6} W(f(x_0)n^{-1/3}h) + o_p(1) \]
\[\overset{d}{=} \sqrt{f(x_0)} W(h) + o_p(1) \]

where \(W \) is a standard two-sided Brownian motion process starting from 0. On the other hand, with \(\delta_n \equiv n^{-1/3} \),
\[n^{2/3} \left(F(x_0 + n^{-1/3}) - F(x_0) - f(x_0)n^{-1/3}h \right) \]
\[= \delta_n^{-2} (F(x_0 + \delta_nh) - F(x_0) - f(x_0)\delta_nh) \]
\[\to -b|h|^2 \quad \text{with} \quad b = |f'(x_0)|/2 \]

by our hypotheses, while \(n^{2/3}n^{-1/3}n^{-1/3}h = n^0h = h \).
C. Limit theory via switching and argmax CM

Thus it follows that the last probability above converges to

\[
P \left(\arg\max_h \left\{ \sqrt{f(x_0)} W(h) - b|h|^2 - yh \right\} < t \right) = P(S_{a,b}(t) < y) \]

by switching again

where

\[
S_{a,b}(t) = \text{slope at } t \text{ of the least concave majorant of } aW(h) - bh^2 \equiv \sqrt{f_0(x_0)} W(h) - |f_0'(x_0)| |h|^2 / 2 \]

\[
deq |2^{-1} f_0(x_0) f_0'(x_0) |S(t/c_0). \]

Exercise 2. Prove the equality in distribution in the last display.
Exercise 3. Let

$$S_n(x_0, t) \equiv n^{1/3}(\hat{f}_n(x_0 + n^{-1/3}t) - f(x_0)).$$

Show that with $y_0 \neq x_0$ and the hypotheses of Case 2 satisfied at both x_0 and y_0, we have

$$\left(S_n(x_0, \cdot) \right) \rightsquigarrow \left(\tilde{S}_{a,b} \right) \text{ in } D[-M, M]^2$$

for every $M > 0$ where $a = \sqrt{f(x_0)}$, $\tilde{a} = \sqrt{f(y_0)}$, $b = |f'(x_0)|/2$, $\tilde{b} = |f'(y_0)|/2$, and $S_{a,b}$, $\tilde{S}_{\tilde{a},\tilde{b}}$ are the left-derivatives of the least concave majorant of $aW(h) - bh^2$ and $\tilde{a}\tilde{W} - \tilde{b}h^2$ and where W and \tilde{W} are independent two-sided Brownian motion processes.
C. Limit theory via switching and argmax CM
E. Other monotone function problems

- Monotone hazard (rate) function
- Regression function
- Distribution function for interval censoring model
- Cumulative mean function, panel count data
- Sub-distribution functions, competing risks with interval censored data

Monotone hazard function:

- **Model:** $\mathcal{H} \equiv$ all monotone increasing (or decreasing) hazard rates (wrt Lebesgue measure) on $\mathbb{R}^+ = (0, \infty)$.

 $$h(t) = \frac{f(t)}{1 - F(t)}; \quad f(t) = h(t)\exp \left(-\int_0^t h(s)\,ds\right) \equiv h(t)\exp (-H(t))$$

- **Observations:** X_1, \ldots, X_n i.i.d. f_0 with $h_0 \in \mathcal{H}$.
- **MLE:** $\hat{f}_n \equiv \arg\max_{h \in \mathcal{H}} \left\{\sum_{i=1}^n \{\log h(X_i) - H(X_i)\}\right\}$
Monotone regression:

- Model: \(Y = r(x) + \epsilon \) where

 \[r \in \mathcal{M} \equiv \{ \text{all monotone (increasing) functions from } D \text{ to } \mathbb{R} \} \]

 \(E(\epsilon) = 0, \ Var(\epsilon) < \infty. \)

- Observations: \(\{(x_{n,i}, Y_{n,i}) : i = 1, \ldots, n\} \) where \(Y_{n,i} = r_0(x_{n,i}) + \epsilon_{n,i} \) for some \(r_0 \in \mathcal{M} \) and \(x_{n,1} \leq \ldots \leq x_{n,n}. \)

- LSE (=MLE for Gaussian \(\epsilon \)'s):

 \[\hat{r}_n \equiv \arg\min_{r \in \mathcal{M}_n} \frac{1}{2} \sum_{i=1}^{n} (Y_{n,i} - r(x_{n,i}))^2 \]

 where \(\mathcal{M}_n \subset \mathcal{M} \) is the subclass of monotone functions which are linear between successive \(x_{n,i} \)'s and the left and right of the range of the \(x_{n,i} \)'s.
Interval censoring case 1 = Current status data:

- Model: $X \sim F$ on \mathbb{R}^+, $Y \sim G$ on \mathbb{R}^+ independent, $F \in \mathcal{F} \equiv \{\text{all distribution functions on } \mathbb{R}^+\}$.

Observe $(Y, \Delta) \equiv (Y, 1_{[X \leq Y]})$, so that

$$(\Delta | Y) \sim \text{Bernoulli}(F(Y)).$$

Thus the density of (Y, Δ) with respect to $G \times \text{counting measure on } \{0, 1\}$ is

$$p(y, \delta; F) = F(y)^\delta (1 - F(y))^{1-\delta}.$$

- Observations: $\{(Y_i, \Delta_i) : i = 1, \ldots, n\}$ i.i.d. as (Y, Δ).

- MLE:

$$\hat{F}_n = \arg\max_{F \in \mathcal{F}} \left\{ \mathbb{P}_n(\Delta \log F + (1 - \Delta) \log(1 - F)) \right\}.$$
E. Other monotone function problems

Panel count data:

Competing risks data with current status observations:
See Groeneboom, Maathuis and W (2008a, 2008b)
F. Other properties of \hat{f}_n

- (a) \hat{f}_n is not consistent at zero; general limit behavior at zero.
- (b) connections to unimodal density estimators
- (c) L_1 metric behavior: Groeneboom (1985), GHL (1999)
- (d) global upper bounds, L_1 & Hellinger: Birgé/Groeneboom/van de Geer
- (e) linear functionals
- (f) Marshall’s lemma and Kiefer - Wolfowitz theory
L1: Monotone functions: maximum likelihood and least squares

L2: Optimality of the MLE of a monotone density

L3: Estimation of convex and k–monotone density functions

L4: Estimation of log-concave densities: $d = 1$ and beyond

L5: More on higher dimensions and some open problems