Nonparametric estimation
under Shape Restrictions

Jon A. Wellner

University of Washington, Seattle

Statistical Seminar, Frejus, France
August 30 - September 3, 2010
Outline: Five Lectures on Shape Restrictions

• L1: Monotone functions: maximum likelihood and least squares
• L2: Optimality of the MLE of a monotone density (and comparisons?)
• L3: Estimation of convex and k–monotone density functions
• L4: Estimation of log-concave densities: $d = 1$ and beyond
• L5: More on higher dimensions and some open problems
Outline: Lecture 5

• A: Some multivariate shape-constrained classes
 ▶ Log-concave & h–convex on \mathbb{R}^d
 ▶ Block-decreasing on \mathbb{R}_d
 ▶ Scale mixtures of uniform on \mathbb{R}_d
 ▶ h–convex on \mathbb{R}_d with h increasing.

• B: Review of available theory; MLEs for multivariate classes.

• C: Some alternative classes in \mathbb{R}:
 Bondesson’s hyperbolically monotone classes.

• D: Open problems and questions: \mathbb{R}^1

• E: Some problems and questions: \mathbb{R}^d
A. Some multivariate shape-constrained classes

- “Block decreasing” densities on $R^{+d} = [0, \infty)^d$
- Monotone with non-negative increments on rectangles (as for a multivariate d.f.)
- Convex and decreasing
- k-monotone; completely monotone
- log–concave; s–concave; h– transform of convex (or concave)
A. Some multivariate shape-constrained classes

Block-decreasing densities on \(\mathbb{R}^{+d} = [0, \infty)^d \)

- \(\mathcal{BD}(\mathbb{R}^d) = \left\{ f : [0, \infty)^d \rightarrow \mathbb{R}^{+} \middle| \int f(x)dx = 1, f(x + he_j) \leq f(x) \text{ for all basis vectors } e_j, j = 1, \ldots, d, h > 0 \right\} \).

- Biau and Devroye (2003): global minimax lower bounds ... and showed that a generalization of Birgé’s histogram estimator achieves the bounds.

- Pavlides (2008, 2009): asymptotic minimax lower bounds for estimation of \(f(x_0) \)
A. Some multivariate shape-constrained classes
A. Some multivariate shape-constrained classes
A. Some multivariate shape-constrained classes

Monotone with non-negative increments on rectangles
(as for a multivariate d.f.)

="Scale mixtures of uniform densities" on \mathbb{R}^{+d}

$$f(x) = \int_{\mathbb{R}^{+d}} \frac{1}{\prod_{j=1}^{d} y_j} 1_{[0,y]}(x) dG(y)$$

for some probability distribution G on \mathbb{R}^{+d}.

Example: $dG(y_1, y_2) = (y_1 y_2)^{-2} g(1/y_1, 1/y_2, \theta) dy_1 dy_2$ with

$$g(u, v, \theta) = \{(1 + \theta u)(1 + \theta v) - \theta\} \exp(-u - v - \theta uv), \quad \theta = .4,$$
A. Some multivariate shape-constrained classes
A. Some multivariate shape-constrained classes

Convex and decreasing on \(\mathbb{R}^d \)

- Seregin (2010)'s increasing convex transformed classes with \(h(x) = x \), so that \(f(x) = \varphi(x) \) with \(\varphi \) convex (or convex and decreasing).

Example: \(f(x) = \exp(-|x|)1_{(0,\infty)^d}(x) \).
A. Some multivariate shape-constrained classes

Log-concave densities on \mathbb{R}^d

- \[f(x) = \exp(\varphi(x)) = \exp(-(-\varphi(x))) \]
 where $\varphi : \mathbb{R}^d \mapsto \mathbb{R}$ is concave (so $-\varphi$ is convex).

- Exponentially decaying tails; does not include multivariate t-densities.
A. Some multivariate shape-constrained classes

- s–convex densities and h– convex densities
 (Koenker and Mizera; Seregin, Seregin and Wellner)

\[f(x) = h(\varphi(x)) \]

where $\varphi : \mathbb{R}^d \mapsto \mathbb{R}$ is convex, $h : \mathbb{R} \mapsto \mathbb{R}^+$ is decreasing and continuous; e.g. $h_s(u) \equiv (1 + u/s)^{-s}$ with $s > d$. Larger classes than log-concave: includes multivariate t_n for $d < s \leq n + d$.
B: Review of available theory:

MLEs for multivariate classes

Block decreasing densities on \mathbb{R}^+^d

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower Bound</th>
<th>Upper Bound / MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (local)</td>
<td>$\prod_{j=1}^{d} \left(\frac{\partial f}{\partial x_j}(x)f(x) \right)^{1/(d+2)}$</td>
<td>$? \quad \text{rate: } n^{1/(d+2)} \quad ??$ $\text{const: } ??$</td>
</tr>
<tr>
<td>C (global)</td>
<td>Biau and Devroye (2003) $\text{rate: } n^{1/(d+2)}$</td>
<td>Biau and Devroye (2003) analogues of Birgé’s histogram estimators</td>
</tr>
</tbody>
</table>
B: Review of available theory:

MLEs for multivariate classes

Scale mixtures of uniform on \mathbb{R}^+d

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower Bound</th>
<th>Upper Bound / MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C (global)</td>
<td>? (hints from entropy bounds of Blei, Gao, and Li)</td>
<td>?? ?? ??</td>
</tr>
</tbody>
</table>
B: Review of available theory: MLEs for multivariate classes

Log concave densities on \mathbb{R}^d

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower Bound</th>
<th>Upper Bound / MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (local)</td>
<td>Seregin (2010) rate: $n^2/(d+4)$ [\left{ f^{d+2}(x)\text{curv}_x(\varphi) \right}^{1/(d+4)}] [\text{curv}_x(\varphi) = \det \nabla^2 \varphi(x)]</td>
<td>?? ?? ??</td>
</tr>
<tr>
<td>C (global)</td>
<td>?? conjectures: Seregin and W (2010)</td>
<td>?? ?? ??</td>
</tr>
</tbody>
</table>
B: Review of available theory:

MLEs for multivariate classes

s–convex and h–convex densities on \mathbb{R}^d

<table>
<thead>
<tr>
<th>Problem</th>
<th>Lower Bound</th>
<th>Upper Bound / MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (local)</td>
<td>$Seregin$ (2010) rate: $\frac{n^2}{(d+4)} \left{ \frac{f(x) \text{curv}_x(\varphi)}{h'(\varphi(x))^4} \right}^{1/(d+4)}$</td>
<td>MLE & LSE rate inefficient (d > 4) ?? ??</td>
</tr>
<tr>
<td>C (global)</td>
<td>?? ?? ??</td>
<td>?? LSE rate inefficient, (d > 4)?? or (d \geq 4)??</td>
</tr>
</tbody>
</table>
Let $k \geq 1$ be an integer. $f : (0, \infty) \rightarrow \mathbb{R}^+$ is hyperbolically monotone of order k (HM_k) if, for each fixed $u > 0$, the function

$$H(w) \equiv f(uv)f(u/v), \quad w \equiv \frac{1}{2} \left(v + \frac{1}{v} \right) \geq 1,$$

is such that

$$(-1)^j H^{(j)}(w) \geq 0, \quad \text{for } j = 0, \ldots, k - 1,$$

$$(-1)^k H^{(k-1)}(w) \text{ is right continuous and decreasing.}$$

If f is hyperbolically monotone for all k, f is said to be hyperbolically completely monotone (HCM or HM_∞).

Note that $f(uv)f(u/v)$ is always a function of w by symmetry, and for $v \geq 1 \quad v = w + \sqrt{w^2 - 1}$.
C: Some alternative classes on \mathbb{R}:

Bondesson’s hyperbolically monotone classes

Example 1. Half-normal distributions

$$f(x) = \sqrt{\frac{2}{\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) 1_{(0,\infty)}(x)$$

has

$$H(w) = f(uv)f(u/v) = \frac{2}{\pi\sigma^2} \exp\left(-\frac{u^2}{2\sigma^2} \left(v + \frac{1}{v}\right)^2 + \frac{u^2}{\sigma^2}\right)$$

$$= \frac{2}{\pi\sigma^2} \exp\left(-\frac{u^2}{2\sigma^2} w^2 + \frac{u^2}{\sigma^2}\right).$$

For fixed $u > 0$ $w \mapsto H(w)$ is decreasing, but $-H'$ is not. Thus $f \in HM_1$ while $f \not\in HM_2$.

Example 2. Uniform (a,b) If $f(x) = (b - a)^{-1} 1_{(a,b)}(x)$ with $0 \leq a < b$, then for $v \geq 1$

$$H(w) = f(uv)f(u/v) = (b - a)^{-2} 1\{a < u/v \leq uv < b\}$$

so $H(w) = 1\{1 \leq v < V_u \equiv \min\{u/a, b/u\}\}$. Thus H is decreasing and $f \in HM_1$.
Exercise 1. Show that \(f(x) = Cx^{\beta-1}(1 + cx)^{-\gamma}1_{(0,\infty)}(x), \) with \(\beta, \gamma, c \geq 0 \) and \(C \) a normalizing constant, satisfies \(f \in HM_\infty. \)

Exercise 2. (log-normal) \(f(x) = C \exp(-(\log x - \mu)^2/2\sigma^2) \) satisfies \(f \in HM_\infty. \)

Exercise 3. \(f(x) = (a - x)^{\gamma-1}1_{(0,\infty)}(x) \) satisfies \(f \in HM_{\lfloor \gamma \rfloor}. \)

Theorem 1. (Bondesson, 1997) If \(X \) and \(Y \) are independent random variables such that \(X \sim f \in HM_k \) and \(Y \sim g \in HM_k \), then \(XY \sim HM_k \) and \(X/Y \sim HM_k. \)

Theorem 2. (Bondesson, 1992) \(X \sim f \in HM_1 \) if and only if \(\log X \sim e^x f(e^x) \) is log-concave.
C: Some alternative classes on \mathbb{R}:

Bondesson’s hyperbolically monotone classes

Putting these two results together:

- Transform the hyperbolically monotone classes from \mathbb{R}^+ to \mathbb{R}:
 \[\mathcal{HM}_k \circ \exp \equiv \{ g(x) = e^x f(e^x) : f \in \mathcal{HM}_k \} \]
 \[\equiv \text{log-hyperbolically } k-\text{monotone} \]

- $\mathcal{HM}_k \circ \exp$ is closed under convolution.

- $\mathcal{HM}_k \circ \exp$ have the same degree of smoothness as the $k+1$-monotone densities

- $\mathcal{HM}_\infty \circ \exp$ contains the Gaussian distributions (by Exercise 2).

Conclusion: The classes $\mathcal{HM}_k \circ \exp \setminus \mathcal{HM}_\infty \circ \exp$ provide a nice analogue of the k-monotone classes on \mathbb{R}^+ for \mathbb{R} with nice closure properties.
D: Open problems and questions: \mathbb{R}^1

- Are there “natural” switching relations for the k–monotone MLE’s and / or LSE’s?
- More connections to convexity theory?
- Pointwise rates of convergence for the k–monotone MLE’s?
- Rates of convergence under degenerate mixing, $G = \delta_1$?
- Rates of convergence for the MLE’s of G (inverse problems)?
- Global rates of convergence in L_1 and Hellinger metrics, log-concave classes?
- Theory for natural discrete shape-constrained classes? (Monotone, convex-decreasing, completely monotone,)
- MLE’s for Bondesson’s HM_k classes?
E: Open problems and questions: \mathbb{R}^d

- **local rates** and **global rates** for shape constrained estimators in \mathbb{R}^d?

- Local (pointwise) limiting distribution theory for MLE’s and other natural divergence-based estimators?

- When are the MLE’s rate (in-)efficient?

 Conjecture 1: Block decreasing: inefficient for $d > 2$.

 Conjecture 2: Log-concave and s–concave: inefficient for $d > 4$.

- How to penalize or sieve or ... to obtain rate efficient estimators in these classes for higher dimensions?

- Do there exist natural shape-constraints with smoothness > 2 for which MLE’s are rate-efficient and which have natural preservations properties under convolution, marginalization, and so forth?
E: Open problems and questions: \mathbb{R}^d

- Faster and more efficient algorithms?

- Faster and more efficient algorithms?!
Je vous remerci!