Nonparametric estimation of log-concave densities

Jon A. Wellner

University of Washington, Seattle

Northwestern University
November 5, 2010
Conference on Shape Restrictions
in Non- and Semi-Parametric Estimation of Econometric Models

Based on joint work with:

- Fadoua Balabdaoui
- Kaspar Rufibach
- Arseni Seregin
Outline

• A: Log-concave densities on \mathbb{R}^1
• B: Nonparametric estimation, log-concave on \mathbb{R}
• C: Limit theory at a fixed point in \mathbb{R}
• D: Estimation of the mode, log-concave density on \mathbb{R}
• E: Generalizations: s–concave densities on \mathbb{R} and \mathbb{R}^d
• F: Summary; problems and open questions
A. Log-concave densities on \mathbb{R}^1

Suppose that

$$f(x) \equiv f_\varphi(x) = \exp(\varphi(x)) = \exp(-(-\varphi(x)))$$

where φ is concave (and $-\varphi$ is convex). The class of all densities f on \mathbb{R} of this form is called the class of log-concave densities, $\mathcal{P}_{\log\text{-}concave} \equiv \mathcal{P}_0$.

Properties of log-concave densities:

- A density f on \mathbb{R} is log-concave if and only if its convolution with any unimodal density is again unimodal (Ibragimov, 1956).
- Every log-concave density f is unimodal (but need not be symmetric).
- \mathcal{P}_0 is closed under convolution.
A. Log-concave densities on \mathbb{R}^1

- Many parametric families are log-concave, for example:
 - Normal (μ, σ^2)
 - Uniform(a, b)
 - Gamma(r, λ) for $r \geq 1$
 - Beta(a, b) for $a, b \geq 1$

- t_r densities with $r > 0$ are not log-concave

- Tails of log-concave densities are necessarily sub-exponential

- $P_{\log\text{- concave}} = \text{the class of “Polyá frequency functions of order 2”, } PFF_2$, in the terminology of Schoenberg (1951) and Karlin (1968). See Marshall and Olkin (1979), chapter 18, and Dharmadhikari and Joag-Dev (1988), page 150. for nice introductions.
B. Nonparametric estimation, log-concave on \mathbb{R}

- The (nonparametric) MLE \hat{f}_n exists (Rufibach, Dümbgen and Rufibach).

- \hat{f}_n can be computed: R-package “logcondens” (Dümbgen and Rufibach)

- In contrast, the (nonparametric) MLE for the class of unimodal densities on \mathbb{R}^1 does not exist. Birgé (1997) and Bickel and Fan (1996) consider alternatives to maximum likelihood for the class of unimodal densities.

- Consistency and rates of convergence for \hat{f}_n: Dümbgen and Rufibach, (2009); Pal, Woodroofe and Meyer (2007).

B. Nonparametric estimation, log-concave on \mathbb{R}

MLE of f and φ: Let \mathcal{C} denote the class of all concave function $\varphi : \mathbb{R} \rightarrow [-\infty, \infty)$. The estimator $\hat{\varphi}_n$ based on X_1, \ldots, X_n i.i.d. as f_0 is the maximizer of the “adjusted criterion function”

$$\ell_n(\varphi) = \int \log f_\varphi(x) dF_n(x) - \int f_\varphi(x) dx$$

$$= \int \varphi(x) dF_n(x) - \int e^{\varphi(x)} dx$$

over $\varphi \in \mathcal{C}$.

Properties of \hat{f}_n, $\hat{\varphi}_n$: (Dümbgen & Rufibach, 2009)

- $\hat{\varphi}_n$ is piecewise linear.
- $\hat{\varphi}_n = -\infty$ on $\mathbb{R} \setminus [X(1), X(n)]$.
- The knots (or kinks) of $\hat{\varphi}_n$ occur at a subset of the order statistics $X(1) < X(2) < \cdots < X(n)$.
- Characterized by ...
B. Nonparametric estimation, log-concave on \mathbb{R}

... $\hat{\varphi}_n$ is the MLE of $\log f_0 = \varphi_0$ if and only if

$$\hat{H}_n(x) \begin{cases} \leq H_n(x), & \text{for all } x > X_{(1)}, \\ = H_n(x), & \text{if } x \text{ is a knot.} \end{cases}$$

where

$$\hat{F}_n(x) = \int_{X_{(1)}}^{x} \hat{f}_n(y)dy, \quad \hat{H}_n(x) = \int_{X_{(1)}}^{x} \hat{F}_n(y)dy,$$

$$H_n(x) = \int_{-\infty}^{x} F_n(y)dy.$$

Furthermore, for every function Δ such that $\hat{\varphi}_n + t\Delta$ is concave for t small enough,

$$\int_{\mathbb{R}} \Delta(x) d\hat{F}_n(x) \leq \int_{\mathbb{R}} \Delta(x) d\hat{F}_n(x).$$
B. Nonparametric estimation, log-concave on \mathbb{R}

Consistency of \hat{f}_n and $\hat{\varphi}_n$:

- (Pal, Woodroofe, & Meyer, 2007):
 If $f_0 \in \mathcal{P}_0$, then $H(\hat{f}_n, f_0) \to_{a.s.} 0$.

- (Dümbgen & Rufibach, 2009):
 If $f_0 \in \mathcal{P}_0$ and $\varphi_0 \in \mathcal{H}^\beta,L(T)$ for some compact $T = [A, B] \subset \{x: f_0(x) > 0\}^o$, $M < \infty$, and $1 \leq \beta \leq 2$. Then

$$\sup_{t \in T}(\hat{\varphi}_n(t) - \varphi_0(t)) = O_p \left(\left(\frac{\log n}{n} \right)^{\beta/(2\beta+1)} \right), \quad \text{and}$$

$$\sup_{t \in T_n}(\varphi_0(t) - \hat{\varphi}_n(t)) = O_p \left(\left(\frac{\log n}{n} \right)^{\beta/(2\beta+1)} \right)$$

where $T_n \equiv [A + (\log n/n)^{\beta/(2\beta+1)}, B - (\log n/n)^{\beta/(2\beta+1)}]$ and $\beta/(2\beta + 1) \in [1/3, 2/5]$ for $1 \leq \beta \leq 2$.

- The same remains true if $\hat{\varphi}_n$, φ_0 are replaced by \hat{f}_n, f_0.

B. Nonparametric estimation, log-concave on \mathbb{R}

- If $\varphi_0 \in \mathcal{H}^{\beta,L}(T)$ as above and, with $\varphi'_0 = \varphi_0(\cdot -)$ or $\varphi'_0(\cdot +)$, $\varphi'_0(x) - \varphi'_0(y) \geq C(y-x)$ for some $C > 0$ and all $A \leq x < y \leq B$, then

$$\sup_{t \in T_n} |\hat{F}_n(t) - F_n(t)| = O_p\left(\left(\frac{\log n}{n}\right)^{3\beta/(4\beta+2)}\right).$$

where $3\beta/(2\beta + 4) \in [1/2, 3/5] = [.5, .6]$ for $1 \leq \beta \leq 2$.

- If $\beta > 1$, this implies $\sup_{t \in T_n} |\hat{F}_n(t) - F_n(t)| = o_p(n^{-1/2}).$
B. Nonparametric estimation, log-concave on \mathbb{R}
B. Nonparametric estimation, log-concave on \mathbb{R}

Fig 2. The estimated log-concave density for different simulation examples. The sample sizes are 50, 100 and 200 respectively for first, second and third columns. The three rows correspond to simulations from a Normal$(0,1)$, a double-exponential and a Gamma$(3,2)$ density. The bold one corresponds to the true density and the dotted one is the estimator.
Figure 3. Density functions and empirical processes for Gumbel samples of size $n = 200$ and $n = 2000$.
B. Nonparametric estimation, log-concave on \mathbb{R}

Figure 1. Distribution functions and the process $D(t)$ for a Gumbel sample.
C: Limit theory at a fixed point in \(\mathbb{R} \)

Assumptions:
- \(f_0 \) is log-concave, \(f_0(x_0) > 0 \).
- If \(\varphi''_0(x_0) \neq 0 \), then \(k = 2 \);
 otherwise, \(k \) is the smallest integer such that
 \(\varphi^{(j)}_0(x_0) = 0, j = 2, \ldots, k - 1, \varphi^{(k)}_0(x_0) \neq 0 \).
- \(\varphi^{(k)}_0 \) is continuous in a neighborhood of \(x_0 \).

Example: \(f_0(x) = C \exp(-x^4) \) with \(C = \sqrt{2} \Gamma(3/4)/\pi \): \(k = 4 \).

Driving process: \(Y_k(t) = \int_0^t W(s)ds - t^{k+2}, W \) standard 2-sided Brownian motion.

Invelope process: \(H_k \) determined by limit Fenchel relations:
- \(H_k(t) \leq Y_k(t) \) for all \(t \in \mathbb{R} \)
- \(\int_{\mathbb{R}} (H_k(t) - Y_k(t))dH^{(3)}_k(t) = 0 \).
- \(H_k^{(2)} \) is concave.
C: Limit theory at a fixed point in \mathbb{R}

Theorem. (Balabdaouli, Rufibach, & W, 2009)

• Pointwise limit theorem for $\hat{f}_n(x_0)$:
\[
\left(\frac{n^k/(2k+1)}{n^{(k-1)/(2k+1)}} \left(\frac{\hat{f}_n(x_0) - f_0(x_0)}{\hat{f}_n'(x_0) - f_0'(x_0)} \right) \right) \rightarrow_d \left(\begin{pmatrix} c_k H_k^{(2)}(0) \\ d_k H_k^{(3)}(0) \end{pmatrix} \right)
\]

where
\[
c_k \equiv \left(\frac{f_0(x_0)^{k+1} |\varphi_0^{(k)}(x_0)|}{(k + 2)!} \right)^{1/(2k+1)},
\]
\[
d_k \equiv \left(\frac{f_0(x_0)^{k+2} |\varphi_0^{(k)}(x_0)|^3}{[(k + 2)!]^3} \right)^{1/(2k+1)}.
\]
C: Limit theory at a fixed point in \mathbb{R}

- Pointwise limit theorem for $\hat{\varphi}_n(x_0)$:

$$
\left(\begin{array}{c}
\frac{n^k}{(2k+1)}(\hat{\varphi}_n(x_0) - \varphi_0(x_0)) \\
\frac{n^{(k-1)}}{(2k+1)}(\hat{\varphi}'_n(x_0) - \varphi'_0(x_0))
\end{array} \right) \rightarrow_d \left(\begin{array}{c}
C_k H_k^{(2)}(0) \\
D_k H_k^{(3)}(0)
\end{array} \right)
$$

where

$$
C_k \equiv \left(\frac{|\varphi^{(k)}_0(x_0)|}{f_0(x_0)^k(k + 2)!} \right)^{1/(2k+1)},
$$

$$
D_k \equiv \left(\frac{|\varphi^{(k)}_0(x_0)|^3}{f_0(x_0)^{k-1}[(k + 2)!]^3} \right)^{1/(2k+1)}.
$$

- Proof: Use the same perturbation as for convex - decreasing density proof with perturbation version of characterization:
C: Limit theory at a fixed point in \mathbb{R}
Let \(x_0 = M(f_0) \) be the mode of the log-concave density \(f_0 \), recalling that \(\mathcal{P}_0 \subset \mathcal{P}_{\text{unimodal}} \). Lower bound calculations using Jongbloed’s perturbation \(\varphi_\epsilon \) of \(\varphi_0 \) yields:

Proposition. If \(f_0 \in \mathcal{P}_0 \) satisfies \(f_0(x_0) > 0 \), \(f_0''(x_0) < 0 \), and \(f_0''' \) is continuous in a neighborhood of \(x_0 \), and \(T_n \) is any estimator of the mode \(x_0 \equiv M(f_0) \), then \(f_n \equiv \exp(\varphi_{\epsilon_n}) \) with \(\epsilon_n \equiv \nu n^{-1/5} \) and \(\nu \equiv 2f_0''(x_0)^2/(5f_0(x_0)) \),

\[
\liminf_{n \to \infty} n^{1/5} \inf_{T_n} \max \{ E_n | T_n - M(f_n) |, E_0 | T_n - M(f_0) | \} \\
\geq \frac{1}{4} \left(\frac{5/2}{10e} \right)^{1/5} \left(\frac{f_0(x_0)}{f_0''(x_0)^2} \right)^{1/5}.
\]

Does the MLE \(M(\hat{f}_n) \) achieve this?
D: Mode estimation, log-concave density on \mathbb{R}
Proposition. (Balabdaoui, Rufibach, & W, 2009)
Suppose that $f_0 \in \mathcal{P}_0$ satisfies:

- $\varphi_0^{(j)}(x_0) = 0, \ j = 2, \ldots, k - 1,$
- $\varphi_0^{(k)}(x_0) \neq 0,$ and
- $\varphi_0^{(k)}$ is continuous in a neighborhood of x_0.

Then $\hat{M}_n \equiv M(\hat{f}_n) \equiv \min \{ u : \hat{f}_n(u) = \sup_t \hat{f}_n(t) \}$, satisfies

$$ n^{1/(2k+1)}(\hat{M}_n - M(f_0)) \rightarrow_d \left(\frac{((k + 2)!)^2 f_0(x_0)}{f_0^{(k)}(x_0)^2} \right)^{1/(2k+1)} M(H_k^{(2)}) $$

where $M(H_k^{(2)}) = \arg \max(H_k^{(2)})$.

Note that when $k = 2$ this agrees with the lower bound calculation, at least up to absolute constants.
D: Mode estimation, log-concave density on \mathbb{R}
When $f_0 = \phi$, the standard normal density, $M(f_0) = 0$, $f_0(0) = (2\pi)^{-1/2}$, $f''_0(0) = -(2\pi)^{-1/2}$, and hence
\[
\left(\frac{(4)!^2 f_0(0)}{f''_0(x_0)^2}\right)^{1/5} = \left(\frac{24^2(2\pi)^{-1/2}}{(2\pi)^{-1}}\right)^{1/5} = 4.28452\ldots
\]
Generalizations of log-concave to \mathbb{R} and \mathbb{R}^d:

Three generalizations:

- log–concave densities on \mathbb{R}^d
 (Cule, Samworth, and Stewart, 2010)

- s–concave and h– transformed convex densities on \mathbb{R}^d
 (Seregin, 2010)

- Hyperbolically k–monotone and completely monotone densities on \mathbb{R}; (Bondesson, 1981, 1992)
E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^d:

Log-concave densities on \mathbb{R}^d:

- A density f on \mathbb{R}^d is log-concave if $f(x) = \exp(\varphi(x))$ with φ concave.

- Some properties:
 - Any log–concave f is unimodal
 - The level sets of f are closed convex sets
 - Convolutions of log-concave distributions are log-concave.
 - Marginals of log-concave distributions are log-concave.
E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^d:

MLE of $f \in \mathcal{P}_0(\mathbb{R}^d)$: (Cule, Samworth, Stewart, 2010)

- MLE $\hat{f}_n = \arg\max_{f \in \mathcal{P}_0(\mathbb{R}^d)} P_n \log f$ exists and is unique if $n \geq d + 1$.

- The estimator $\hat{\varphi}_n$ of φ_0 is a “taut tent” stretched over “tent poles” of certain heights at a subset of the observations.

E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^d:

Fig. 3. Log-concave maximum likelihood estimates based on 1000 observations (plotted as dots) from a standard bivariate normal distribution.
E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^d:

- If f_0 is any density on \mathbb{R}^d with $\int_{\mathbb{R}^d} \|x\|f_0(x)dx < \infty$, $\int_{\mathbb{R}^d} f_0(x)\log f_0(x)dx < \infty$, and $\{x \in \mathbb{R}^d : f_0(x) > 0\}^\circ = \text{int}(\text{supp}(f_0)) \neq \emptyset$, then \hat{f}_n satisfies:

$$\int_{\mathbb{R}^d} |\hat{f}_n(x) - f^*(x)|dx \to_{a.s.} 0$$

where, for the Kullback-Leibler divergence

$$K(f_0, f) = \int f_0\log(f_0/f)d\mu,$$

$$f^* = \arg\min_{f \in \mathcal{P}_0(\mathbb{R}^d)} K(f_0, f)$$

is the “pseudo-true” density in $\mathcal{P}_0(\mathbb{R}^d)$ corresponding to f_0.

In fact:

$$\int_{\mathbb{R}^d} e^{a\|x\|}|\hat{f}_n(x) - f^*(x)|dx \to_{a.s.} 0$$

for any $a < a_0$ where $f^*(x) \leq \exp(-a_0\|x\| + b_0)$.
Generalizations of log-concave to \mathbb{R} and \mathbb{R}^d:

$r-$concave and $h-$ transformed convex densities on \mathbb{R}^d: (Seregin, 2010; Seregin &., 2010)

Generalization to $s-$concave densities: A density f on \mathbb{R}^d is $r-$concave on $C \subset \mathbb{R}^d$ if

$$f(\lambda x + (1 - \lambda)y) \geq M_r(f(x), f(y); \lambda)$$

for all $x, y \in C$ and $0 < \lambda < 1$ where

$$M_r(a, b; \lambda) = \begin{cases} ((1 - \lambda)a^r + \lambda b^r)^{1/r}, & r \neq 0, a, b > 0, \\ 0, & r < 0, ab = 0 \\ a^{1-\lambda}b^\lambda, & r = 0. \end{cases}$$

Let \mathcal{P}_r denote the class of all $r-$concave densities on C. For $r \leq 0$ it suffices to consider $C = \mathbb{R}^d$, and it is almost immediate from the definitions that if $f \in \mathcal{P}_r$ for some $r \leq 0$, then

$$f(x) = \begin{cases} g(x)^{1/r}, & r < 0 \\ \exp(-g(x)), & r = 0 \end{cases}$$

for g convex.
E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^d:

- Nice connections to t–concave measures: (Borell, 1975)
- Known now in math-analysis as the Borell, Brascamp, Lieb inequality
- One way to get heavier tails than log-concave!

Example: Multivariate t–density with p–degrees of freedom:

If

$$f(x) = f(x; p, d) = \frac{\Gamma\left((d + p)/2\right)}{\Gamma(p/2)(p\pi)^{d/2}} \frac{1}{\left(1 + \frac{\|x\|^2}{p}\right)^{(d+p)/2}}$$

then $f \in \mathcal{P}_{-1/s}$ for $s \in (d, d + p]$; i.e. $f \in \mathcal{P}_r(\mathbb{R}^d)$ for $-1/(d + p) \leq r < -1/d$.

Northwestern University, November 5, 2010 1.29
E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^d:

A measure μ on $(\mathbb{R}, \mathcal{B})$ is called t–concave if for all $A, B \in \mathcal{B}$ and $0 \leq \lambda \leq 1$

$$\mu(\lambda A + (1 - \lambda)B) \geq M_t(\mu(A), \mu(B), \lambda).$$

Theorem. (Borell, 1975) If $f \in \mathcal{P}_r$ with $-1/d \leq r \leq \infty$, then the measure $P = P_f$ defined by $P(A) = \int_A f(x)dx$ for Borel subsets A of \mathbb{R}^d is t–concave with

$$t = \begin{cases}
\frac{r}{1 + dr}, & \text{if } -1/d < r < \infty, \\
-\infty, & \text{if } r = -1/d, \\
1/d, & \text{if } r = \infty,
\end{cases}$$

and conversely.
E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^d:

$h-$ convex densities: Seregin (2010), Seregin & W (2010))

$$f(x) = h(\varphi(x))$$ \hspace{1cm} (1)

where $\varphi : \mathbb{R}^d \mapsto \mathbb{R}$ is convex, $h : \mathbb{R} \mapsto \mathbb{R}^+$ is decreasing and continuous; e.g. $h_s(u) \equiv (1 + u/s)^{-s}$ with $s > d$.

This motivates the following definition:

Definition. Say that $h : \mathbb{R} \mapsto \mathbb{R}^+$ is a **decreasing transformation** if, with $y_0 \equiv \sup\{y : h(y) > 0\}$, $y_\infty \equiv \inf\{y : h(y) < \infty\}$,

- $h(y) = o(y^{-\alpha})$ for some $\alpha > d$ as $y \to \infty$.

- If $y_\infty > -\infty$, then $h(y) \asymp (y - y_\infty)^{-\beta}$ for some $\beta > d$ as $y \downarrow y_\infty$.

- If $y_\infty = -\infty$, then $h(y)^\gamma h(-Cy) = o(1)$ as $y \to -\infty$ for some $\gamma, C' > 0$.

- h is continuously differentiable on (y_∞, y_0).
E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^d:
E: Generalizations of log-concave to \mathbb{R} and \mathbb{R}^d:

Let \mathcal{P}_h denote the collection of all densities on \mathbb{R}^d of the form $f = h \circ \varphi$ for a fixed decreasing transformation h and φ convex, and let

$$\hat{f}_n \equiv \arg\max_{f \in \mathcal{P}_h} \mathbb{P}_n \log f, \text{ the MLE.}$$

Theorem. $\hat{f}_n \in \mathcal{P}_h$ exists if $n \geq \lceil n_d \rceil$ where

$$n_d \equiv d + d \gamma \mathbb{1}\{y_{\infty} = -\infty\} + \frac{\beta d^2}{\alpha(\beta - d)} \mathbb{1}\{y_{\infty} > -\infty\}$$

$$= \begin{cases} d + 1, & \text{if } h(y) = e^{-y}, \\ d \left(\frac{s}{s-d} \right), & \text{if } h(y) = y^{-s}, s > d. \end{cases}$$

Theorem. If h is a decreasing transformation as defined above, and $f_0 \in \mathcal{P}_h$, then

$$H(\hat{f}_n, f_0) \to_{a.s.} 0.$$
E: Generalizations of log-concave to \(\mathbb{R} \) and \(\mathbb{R}^d \):

Questions:

- Rates of convergence?
- MLE (rate-) inefficient for \(d \geq 4 \)? How to penalize to get efficient rates?
- Multivariate classes with nice preservation/closure properties and smoother than log-concave?
- Can we treat \(\hat{f}_n \in \mathcal{P}_h \) with miss-specification: \(f_0 \notin \mathcal{P}_h \)?
- Algorithms for computing \(\hat{f}_n \in \mathcal{P}_h \)?