Log-concave distributions: definitions, properties, and consequences

Jon A. Wellner

University of Washington, Seattle; visiting Heidelberg

Seminaire Point de vue, Universite Paris-Diderot Paris 7
23 January 2012
Seminaire Point de vue, Paris

Part 1

Based on joint work with:

- Fadoua Balabdaoui
- Kaspar Rufibach
- Arseni Seregin
Outline, Part 1

1. Log-concave densities / distributions: definitions
2. Properties of the class
3. Some consequences (statistics and probability)
4. Strong log-concavity: definitions
5. Examples & counterexamples
6. Some consequences, strong log-concavity
7. Questions & problems
1. Log-concave densities / distributions: definitions

Suppose that a density f can be written as

$$f(x) \equiv f_\varphi(x) = \exp(\varphi(x)) = \exp(-(-\varphi(x)))$$

where φ is concave (and $-\varphi$ is convex). The class of all densities f on \mathbb{R}, or on \mathbb{R}^d, of this form is called the class of log-concave densities, $\mathcal{P}_{\text{log-concave}} \equiv \mathcal{P}_0$.

Note that f is log-concave if and only if :

- $\log f(\lambda x + (1-\lambda)y) \geq \lambda \log f(x) + (1-\lambda) \log f(y)$ for all $0 \leq \lambda \leq 1$ and for all x, y.
- iff $f(\lambda x + (1-\lambda)y) \geq f(x)^\lambda \cdot f(y)^{1-\lambda}$
- iff $f((x + y)/2) \geq \sqrt{f(x)f(y)}$, (assuming f is measurable)
- iff $f((x + y)/2)^2 \geq f(x)f(y)$.
1. Log-concave densities / distributions: definitions

Examples, \mathbb{R}

- Example 1: standard normal

\[f(x) = (2\pi)^{-1/2} \exp(-x^2/2), \]
\[-\log f(x) = \frac{1}{2}x^2 + \log \sqrt{2\pi}, \]
\[(-\log f)''(x) = 1. \]

- Example 2: Laplace

\[f(x) = 2^{-1} \exp(-|x|), \]
\[-\log f(x) = |x| + \log 2, \]
\[(-\log f)''(x) = 0 \quad \text{for all} \quad x \neq 0. \]
1. Log-concave densities / distributions: definitions

- **Example 3: Logistic**

 \[
 f(x) = \frac{e^x}{(1 + e^x)^2},
 \]
 \[
 -\log f(x) = -x + 2\log(1 + e^x),
 \]
 \[
 (-\log f)''(x) = \frac{e^x}{(1 + e^x)^2} = f(x).
 \]

- **Example 4: Subbotin**

 \[
 f(x) = C_r^{-1}\exp(-|x|^r/r), \quad C_r = 2\Gamma(1/r)r^{1/r-1},
 \]
 \[
 -\log f(x) = r^{-1}|x|^r + \log C_r,
 \]
 \[
 (-\log f)''(x) = (r - 1)|x|^{r-2}, \quad r \geq 1, \quad x \neq 0.
 \]
1. Log-concave densities / distributions: definitions

- Many univariate parametric families on \mathbb{R} are log-concave, for example:
 - Normal (μ, σ^2)
 - Uniform(a, b)
 - Gamma(r, λ) for $r \geq 1$
 - Beta(a, b) for $a, b \geq 1$
 - Subbotin(r) with $r \geq 1$.

- t_r densities with $r > 0$ are not log-concave.

- Tails of log-concave densities are necessarily sub-exponential:
 i.e. if $X \sim f \in PF_2$, then $E\exp(c|X|) < \infty$ for some $c > 0$.
1. Log-concave densities / distributions: definitions

Log-concave densities on \(\mathbb{R}^d \):

- A density \(f \) on \(\mathbb{R}^d \) is log-concave if \(f(x) = \exp(\varphi(x)) \) with \(\varphi \) concave.
- Examples
 - The density \(f \) of \(X \sim \mathcal{N}_d(\mu, \Sigma) \) with \(\Sigma \) positive definite:

 \[
 f(x) = f(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d|\Sigma|}} \exp \left(-\frac{1}{2}(x - \mu)^T\Sigma^{-1}(x - \mu) \right),
 \]

 \[
 -\log f(x) = \frac{1}{2}(x - \mu)^T\Sigma^{-1}(x - \mu) - (1/2)\log(2\pi|\Sigma|),
 \]

 \[
 D^2(-\log f)(x) \equiv \left(\frac{\partial^2}{\partial x_i \partial x_j}(-\log f)(x), i, j = 1, \ldots, d \right) = \Sigma^{-1}.
 \]

- If \(K \subset \mathbb{R}^d \) is compact and convex, then \(f(x) = 1_K(x)/\lambda(K) \) is a log-concave density.
1. Log-concave densities / distributions: definitions

Log-concave measures:
Suppose that P is a probability measure on $(\mathbb{R}^d, \mathcal{B}_d)$. P is a log-concave measure if for all nonempty $A, B \in \mathcal{B}_d$ and $\lambda \in (0, 1)$ we have

$$P(\lambda A + (1 - \lambda)B) \geq \{P(A)\}^\lambda \{P(B)\}^{1-\lambda}.$$

- A set $A \subset \mathbb{R}^d$ is affine if $tx + (1 - t)y \in A$ for all $x, y \in A, t \in \mathbb{R}$.
- The affine hull of a set $A \subset \mathbb{R}^d$ is the smallest affine set containing A.

Theorem. (Prékopa (1971, 1973), Rinott (1976)). Suppose P is a probability measure on \mathcal{B}_d such that the affine hull of $\text{supp}(P)$ has dimension d. Then P is log-concave if and only if there is a log-concave (density) function f on \mathbb{R}^d such that

$$P(B) = \int_B f(x)dx \quad \text{for all} \quad B \in \mathcal{B}_d.$$
2. Properties of log-concave densities

Properties: log-concave densities on \mathbb{R}:

- A density f on \mathbb{R} is log-concave if and only if its convolution with any unimodal density is again unimodal (Ibragimov, 1956).
- Every log-concave density f is unimodal (but need not be symmetric).
- \mathcal{P}_0 is closed under convolution.
- \mathcal{P}_0 is closed under weak limits.
2. Properties of log-concave densities

Properties: log-concave densities on \(\mathbb{R}^d \):

- Any log–concave \(f \) is unimodal.
- The level sets of \(f \) are closed convex sets.
- Log-concave densities correspond to log-concave measures. Prékopa, Rinott.
- Marginals of log-concave distributions are log-concave: if
 \(f(x, y) \) is a log-concave density on \(\mathbb{R}^{m+n} \), then
 \[
 g(x) = \int_{\mathbb{R}^n} f(x, y) \, dy
 \]
 is a log-concave density on \(\mathbb{R}^m \). Prékopa, Brascamp-Lieb.
- Products of log-concave densities are log-concave.
- \(\mathcal{P}_0 \) is closed under convolution.
- \(\mathcal{P}_0 \) is closed under weak limits.
3. Some consequences and connections
(statistics and probability)

- (a) \(f \) is log-concave if and only if \(\det((f(x_i - y_j))_{i,j \in \{1,2\}}) \geq 0 \) for all \(x_1 \leq x_2, y_1 \leq y_2 \); i.e. \(f \) is a Polya frequency density of order 2; thus

\[\text{log-concave} = PF_2 = \text{strongly uni-modal} \]

- (b) The densities \(p_\theta(x) \equiv f(x - \theta) \) for \(\theta \in \mathbb{R} \) have monotone likelihood ratio (in \(x \)) if and only if \(f \) is log-concave.

Proof of (b): \(p_\theta(x) = f(x - \theta) \) has MLR iff

\[
\frac{f(x - \theta')}{f(x - \theta)} \leq \frac{f(x' - \theta')}{f(x' - \theta)} \quad \text{for all} \quad x < x', \theta < \theta'
\]

This holds if and only if

\[
\log f(x - \theta') + \log f(x' - \theta) \leq \log f(x' - \theta') + \log f(x - \theta). \quad (1)
\]

Let \(t = (x' - x)/(x' - x + \theta' - \theta) \) and note that
3. Some consequences and connections

(statistics and probability)

\[x - \theta = t(x - \theta') + (1 - t)(x' - \theta), \]
\[x' - \theta' = (1 - t)(x - \theta') + t(x' - \theta) \]

Hence log-concavity of \(f \) implies that

\[\log f(x - \theta) \geq t \log f(x - \theta') + (1 - t) \log f(x' - \theta), \]
\[\log f(x' - \theta') \geq (1 - t) \log f(x - \theta') + t \log f(x' - \theta). \]

Adding these yields (1); i.e. \(f \) log-concave implies \(p_{\theta}(x) \) has MLR in \(x \).

Now suppose that \(p_{\theta}(x) \) has MLR so that (1) holds. In particular that holds if \(x, x', \theta, \theta' \) satisfy \(x - \theta' = a < b = x' - \theta \) and \(t = (x' - x)/(x' - x + \theta' - \theta) = 1/2 \), so that \(x - \theta = (a + b)/2 = x' - \theta' \). Then (1) becomes

\[\log f(a) + \log f(b) \leq 2\log f((a + b)/2). \]

This together with measurability of \(f \) implies that \(f \) is log-concave.
3. Some consequences and connections
(statistics and probability)

Proof of (a): Suppose f is PF_2. Then for $x < x'$, $y < y'$,

$$
\begin{align*}
\det \begin{pmatrix}
 f(x - y) & f(x - y') \\
 f(x' - y) & f(x' - y')
\end{pmatrix} \\
= f(x - y)f(x' - y') - f(x - y')f(x' - y) \geq 0
\end{align*}
$$

if and only if

$$
f(x - y')f(x' - y) \leq f(x - y)f(x' - y'),
$$

or, if and only if

$$
\frac{f(x - y')}{f(x - y)} \leq \frac{f(x' - y')}{f(x' - y)}.
$$

That is, $p_y(x)$ has MLR in x. By (b) this is equivalent to f log-concave.
3. Some consequences and connections
(statistics and probability)

Theorem. (Brascamp-Lieb, 1976). Suppose $X \sim f = e^{-\varphi}$ with φ convex and $D^2 \varphi > 0$, and let $g \in C^1(\mathbb{R}^d)$. Then

$$Var_f(g(X)) \leq E\langle (D^2 \varphi)^{-1} \nabla g(X), \nabla g(X) \rangle.$$

(Poincaré - type inequality for log-concave densities)
3. Some consequences and connections
(statistics and probability)

Further consequences: Peakedness and majorization

Theorem 1. (Proschan, 1965) Suppose that f on \mathbb{R} is log-concave and symmetric about 0. Let X_1, \ldots, X_n be i.i.d. with density f, and suppose that $p, p' \in \mathbb{R}_+^n$ satisfy

- p, p' are not identical,
- $p_1 \geq p_2 \geq \cdots \geq p_n$, $p'_1 \geq p'_2 \geq \cdots \geq p'_n$,
- $\sum_1^k p'_j \leq \sum_1^k p_j$, $k \in \{1, \ldots, n\}$,
- $\sum_1^n p_j = \sum_1^n p'_j = 1$.

(That is, $p' \prec p$.) Then $\sum_1^n p'_j X_j$ is strictly more peaked than $\sum_1^n p_j X_j$:

$$P \left(\left| \sum_1^n p'_j X_j \right| \geq t \right) < P \left(\left| \sum_1^n p_j X_j \right| \geq t \right)$$

for all $t \geq 0$.
3. Some consequences and connections (statistics and probability)

Example: \(p_1 = \cdots = p_{n-1} = 1/(n-1), \ p_n = 0, \) while \(p'_1 = \cdots = p'_n = 1/n. \) Then \(p \succ p' \) (since \(\sum_1^n p_j = \sum_1^n p'_j = 1 \) and \(\sum_1^k p_j = k/(n-1) \geq k/n = \sum_1^k p'_j \)), and hence if \(X_1, \ldots, X_n \) are i.i.d. \(f \) symmetric and log-concave,

\[
P(\lvert X_n \rvert \geq t) < P(\lvert X_{n-1} \rvert \geq t) < \cdots < P(\lvert X_1 \rvert \geq t) \quad \text{for all} \quad t \geq 0.
\]

Definition: A \(d \)-dimensional random variable \(X \) is said to be more peaked than a random variable \(Y \) if both \(X \) and \(Y \) have densities and

\[
P(Y \in A) \geq P(X \in A) \quad \text{for all} \quad A \in \mathcal{A}_d,
\]
the class of subsets of \(\mathbb{R}^d \) which are compact, convex, and symmetric about the origin.
3. Some consequences and connections (statistics and probability)

Theorem 2. (Olkin and Tong, 1988) Suppose that \(f \) on \(\mathbb{R}^d \) is log-concave and symmetric about 0. Let \(X_1, \ldots, X_n \) be i.i.d. with density \(f \), and suppose that \(a, b \in \mathbb{R}^n \) satisfy

- \(a_1 \geq a_2 \geq \cdots \geq a_n, \ b_1 \geq b_2 \geq \cdots \geq b_n \),
- \(\sum_1^k a_j \leq \sum_1^k b_j, \ k \in \{1, \ldots, n\} \),
- \(\sum_1^n a_j = \sum_1^n b_j \).

(That is, \(a < b \).)

Then \(\sum_1^n a_j X_j \) is more peaked than \(\sum_1^n b_j X_j \):

\[
P \left(\sum_1^n a_j X_j \in A \right) \geq P \left(\sum_1^n b_j X_j \in A \right) \quad \text{for all} \quad A \in \mathcal{A}_d
\]

In particular,

\[
P \left(\| \sum_1^n a_j X_j \| \geq t \right) \leq P \left(\| \sum_1^n b_j X_j \| \geq t \right) \quad \text{for all} \quad t \geq 0.
\]
3. Some consequences and connections
(statistics and probability)

Corollary: If g is non-decreasing on \mathbb{R}^+ with $g(0) = 0$, then

$$
Eg \left(\| \sum_1^n a_j X_j \| \right) \leq Eg \left(\| \sum_1^n b_j X_j \| \right).
$$

Another peakedness result:

Suppose that $Y = (Y_1, \ldots, Y_n)$ where $Y_j \sim N(\mu_j, \sigma^2)$ are independent and $\mu_1 \leq \ldots \leq \mu_n$; i.e. $\mu \in K_n$ where $K_n \equiv \{ x \in \mathbb{R}^n : x_1 \leq \cdots \leq x_n \}$. Let

$$
\hat{\mu}_n = \Pi(Y|K_n),
$$

the least squares projection of Y onto K_n. It is well-known that

$$
\hat{\mu}_n = \left(\min_{s \geq i} \max_{r \leq i} \frac{\sum_{j=r}^{s} Y_j}{s-r+1}, \ i = 1, \ldots, n \right).
$$
3. Some consequences and connections
(statistics and probability)

Theorem 3. (Kelly) If $\underline{Y} \sim N_n(\mu, \sigma^2 I)$ and $\mu \in K_n$, then $\hat{\mu}_k - \mu_k$ is more peaked than $Y_k - \mu_k$ for each $k \in \{1, \ldots, n\}$; that is

$$P(|\hat{\mu}_k - \mu_k| \leq t) \geq P(|Y_k - \mu_k| \leq t) \quad \text{for all} \quad t > 0, \quad k \in \{1, \ldots, n\}.$$

Question: Does Kelly’s theorem continue to hold if the normal distribution is replaced by an arbitrary log-concave joint density symmetric about μ?
4. Strong log-concavity: definitions

Definition 1. A density f on \mathbb{R} is *strongly log-concave* if

$$f(x) = h(x)c\phi(cx) \quad \text{for some } c > 0$$

where h is log-concave and $\phi(x) = (2\pi)^{-1/2}\exp(-x^2/2)$.

Sufficient condition: $\log f \in C^2(\mathbb{R})$ with $(-\log f)''(x) \geq c^2 > 0$ for all x.

Definition 2. A density f on \mathbb{R}^d is *strongly log-concave* if

$$f(x) = h(x)c\gamma(cx) \quad \text{for some } c > 0$$

where h is log-concave and γ is the $N_d(0,cI_d)$ density.

Sufficient condition: $\log f \in C^2(\mathbb{R}^d)$ with $D^2(-\log f)(x) \geq c^2I_d$ for some $c > 0$ for all $x \in \mathbb{R}^d$.

These agree with *strong convexity* as defined by Rockafellar & Wets (1998), p. 565.
5. Examples & counterexamples

Examples

Example 1. \(f(x) = h(x)\phi(x)/\int h\phi dx \) where \(h \) is the logistic density, \(h(x) = e^x/(1 + e^x)^2 \).

Example 2. \(f(x) = h(x)\phi(x)/\int h\phi dx \) where \(h \) is the Gumbel density. \(h(x) = \exp(x - e^x) \).

Example 3. \(f(x) = h(x)h(-x)/\int h(y)h(-y)dy \) where \(h \) is the Gumbel density.

Counterexamples

Counterexample 1. \(f \) logistic: \(f(x) = e^x/(1 + e^x)^2 \); \((-\log f)''(x) = f(x) \).

Counterexample 2. \(f \) Subbotin, \(r \in [1, 2) \cup (2, \infty) \); \(f(x) = C_r^{-1}\exp(-|x|^r/r) \); \((-\log f)''(x) = (r - 2)|x|^r-2 \).
Ex. 1: Logistic (red) perturbation of $N(0,1)$ (green): f (blue)
Ex. 1: \((-\log f)''\), Logistic perturbation of \(N(0, 1)\)
Ex. 2: Gumbel (red) perturbation of $N(0, 1)$ (green): f (blue)
Ex. 2: $(-\log f)''$, Gumbel perturbation of $N(0, 1)$
Ex. 3: Gumbel (\(\cdot\)) \(\times\) Gumbel(-\(\cdot\)) (purple); \(N(0, V_f)\) (blue)
Ex. 3: $-\log \text{Gumbel}(\cdot) \times \text{Gumbel}(\cdot)$ (purple); $-\log \mathcal{N}(0, V_f)$ (blue)
Ex. 3: $D^2(-\log \text{Gumbel}(\cdot) \times \text{Gumbel}(-\cdot))$ (purple); $D^2(-\log \mathcal{N}(0, V_f))$ (blue)
Subbotin $f_r, r = 1$ (blue), $r = 1.5$ (red), $r = 2$ (green), $r = 3$ (purple)
$-\log f_r: \ r = 1 \ (\text{blue}), \ r = 1.5 \ (\text{red}), \ r = 2 \ (\text{green}), \ r = 3 \ (\text{purple})$
\((-\log f_r)''\): $r = 1$ (blue), $r = 1.5$ (red), $r = 2$ (green), $r = 3$ (purple)
6. Some consequences, strong log-concavity

First consequence

Theorem. (Hargé, 2004). Suppose $X \sim N_n(\mu, \Sigma)$ with density γ and Y has density $h \cdot \gamma$ with h log-concave, and let $g : \mathbb{R}^n \to \mathbb{R}$ be convex. Then

$$Eg(Y - E(Y)) \leq Eg(X - EX).$$

Equivalently, with $\mu = EX$, $\nu = EY = E(Xh(X))/Eh(X)$, and $\tilde{g} \equiv g(\cdot + \mu)$

$$E\{\tilde{g}(X - \nu + \mu)h(X)\} \leq E\tilde{g}(X) \cdot Eh(X).$$
6. Some consequences, strong log-concavity

More consequences

Corollary. (Brascamp-Lieb, 1976). Suppose $X \sim f = \exp(-\varphi)$ with $D^2\varphi \geq \lambda I_d$, $\lambda > 0$, and let $g \in C^1(\mathbb{R}^d)$. Then

$$Var_f(g(X)) \leq E\langle (D^2\varphi)^{-1}\nabla g(X), \nabla g(X) \rangle \leq \frac{1}{\lambda} E|\nabla g(X)|^2.$$

(Poincaré inequality for strongly log-concave densities; improvements by Hargé (2008))

Theorem. (Caffarelli, 2002). Suppose $X \sim N_d(0, I)$ with density γ_d and Y has density $e^{-v} \cdot \gamma_d$ with v convex. Let $T = \nabla \varphi$ be the unique gradient of a convex map φ such that $\nabla \varphi(X) \overset{d}{=} Y$. Then

$$0 \leq D^2 \varphi \leq I_d.$$

(cf. Villani (2003), pages 290-291)
7. Questions & problems

- Does strong log-concavity occur naturally? Are there natural examples?

- Are there large classes of strongly log-concave densities in connection with other known classes such as PF_∞ (Pólya frequency functions of order infinity) or L. Bondesson’s class HM_∞ of completely hyperbolically monotone densities?

- Does Kelly’s peakedness result for projection onto the ordered cone K_n continue to hold with Gaussian replaced by log-concave (or symmetric log concave)?
Selected references:

