• Talk at University of Washington, Department of Statistics, Research Day, September 28, 2009

• Email: jaw@stat.washington.edu
 http://www.stat.washington.edu/jaw/jaw.research.html
Outline

- Introduction: shape constraints, nonparametric estimation and testing
Outline

• Introduction: shape constraints, nonparametric estimation and testing
• Problems 1-4 from Gothenburg meeting: rearrangements versus maximum likelihood
Outline

• Introduction: shape constraints, nonparametric estimation and testing
• Problems 1-4 from Gothenburg meeting: rearrangements versus maximum likelihood
• Problems 5-6 from Gothenburg meeting: how big is the Grenander estimator at zero
Outline

- Introduction: shape constraints, nonparametric estimation and testing
- Problems 1-4 from Gothenburg meeting: rearrangements versus maximum likelihood
- Problems 5-6 from Gothenburg meeting: how big is the Grenander estimator at zero
- Four more problems involving shape constraints ... very briefly
1. Introduction: shape constraints

Types of shape restrictions for functions on \mathbb{R}:

- Monotone
1. Introduction: shape constraints

Types of shape restrictions for functions on \mathbb{R}:

- Monotone
- Unimodal, antimodal, piecewise monotone
1. Introduction: shape constraints

Types of shape restrictions for functions on \mathbb{R}:

- Monotone
- Unimodal, antimodal, piecewise monotone
- Convex, concave, log-concave
1. Introduction: shape constraints

Types of shape restrictions for functions on \mathbb{R}:

- Monotone
- Unimodal, antimodal, piecewise monotone
- Convex, concave, log-concave
- k–monotone, completely monotone
1. Introduction: shape constraints

Types of shape restrictions for functions on \mathbb{R}:

- Monotone
- Unimodal, antimodal, piecewise monotone
- Convex, concave, log-concave
- $k-$monotone, completely monotone
Types of functions to be estimated on \mathbb{R}:

- Density function f, or mass function $\{p_x : x \in \mathbb{Z}\}$
Types of functions to be estimated on \mathbb{R}:

- Density function f, or mass function $\{p_x : x \in \mathbb{Z}\}$
- Regression function, $r(x) = E(Y|X = x)$
Types of functions to be estimated on \mathbb{R}:

- Density function f, or mass function $\{p_x : x \in \mathbb{Z}\}$
- Regression function, $r(x) = E(Y|X = x)$
- Hazard function h:

$$h(x) = \frac{f(x)}{1 - F(x)}$$
Types of functions to be estimated on \mathbb{R}:

- Density function f, or mass function $\{p_x : x \in \mathbb{Z}\}$
- Regression function, $r(x) = E(Y \mid X = x)$
- Hazard function h:
 $$h(x) = \frac{f(x)}{1 - F(x)}$$
- Intensity function λ of a Poisson process
Types of functions to be estimated on \mathbb{R}:

- Density function f, or mass function $\{p_x : x \in \mathbb{Z}\}$
- Regression function, $r(x) = E(Y | X = x)$
- Hazard function h:
 \[h(x) = \frac{f(x)}{1 - F(x)} \]
- Intensity function λ of a Poisson process
- Distribution functions in interval censoring models (non-regular or “inverse problem”)
Types of functions to be estimated on \mathbb{R}:

- Density function f, or mass function $\{p_x : x \in \mathbb{Z}\}$
- Regression function, $r(x) = E(Y | X = x)$
- Hazard function h:
 \[
 h(x) = \frac{f(x)}{1 - F(x)}
 \]

- Intensity function λ of a Poisson process
- Distribution functions in interval censoring models (non-regular or “inverse problem”)
- Distribution functions in direct observation models (regular or “forward problem”)

Estimation and Testing with Shape Constraints – p. 5/30
Types of functions to be estimated on \mathbb{R}:

- Density function f, or mass function $\{p_x : x \in \mathbb{Z}\}$
- Regression function, $r(x) = E(Y | X = x)$
- Hazard function h:
 \[
 h(x) = \frac{f(x)}{1 - F(x)}
 \]
- Intensity function λ of a Poisson process
- Distribution functions in interval censoring models
 (non-regular or “inverse problem”)
- Distribution functions in direct observation models
 (regular or “forward problem”)
- Spectral density function
Types of functions to be estimated on \mathbb{R}:

- Density function f, or mass function $\{p_x : x \in \mathbb{Z}\}$
- Regression function, $r(x) = E(Y|X = x)$
- Hazard function h:
 \[h(x) = \frac{f(x)}{1 - F(x)} \]
- Intensity function λ of a Poisson process
- Distribution functions in interval censoring models (non-regular or "inverse problem")
- Distribution functions in direct observation models (regular or "forward problem")
- Spectral density function
- ...
What kind of theory?

• Local (pointwise), or
What kind of theory?

- Local (pointwise), or
- Global (with some global measure of deviations):
 - Hellinger distance (densities or intensities)?
 - L_1 or L_2–distances?
 - supremum metrics?
What kind of theory?

• Local (pointwise), or

• Global (with some global measure of deviations):
 ◦ Hellinger distance (densities or intensities)?
 ◦ L_1 or L_2—distances?
 ◦ supremum metrics?

• (Minimax) lower bounds for estimation?
What kind of theory?

• Local (pointwise), or

• Global (with some global measure of deviations):
 ◦ Hellinger distance (densities or intensities)?
 ◦ L_1 or L_2–distances?
 ◦ supremum metrics?

• (Minimax) lower bounds for estimation?
• (Minimax) upper bounds for estimation?
What kind of theory?

• Local (pointwise), or
• Global (with some global measure of deviations):
 ◦ Hellinger distance (densities or intensities)?
 ◦ L_1 or L_2–distances?
 ◦ supremum metrics?
• (Minimax) lower bounds for estimation?
• (Minimax) upper bounds for estimation?
• Comparison of Estimators
What kind of theory?

- Local (pointwise), or
- Global (with some global measure of deviations):
 - Hellinger distance (densities or intensities)?
 - L_1 or L_2–distances?
 - supremum metrics?
- (Minimax) lower bounds for estimation?
- (Minimax) upper bounds for estimation?
- Comparison of Estimators
- Testing (within a shape constrained family)
What kind of theory?

• Local (pointwise), or
• Global (with some global measure of deviations):
 ◦ Hellinger distance (densities or intensities)?
 ◦ L_1 or L_2—distances?
 ◦ supremum metrics?
• (Minimax) lower bounds for estimation?
• (Minimax) upper bounds for estimation?
• Comparison of Estimators
• Testing (within a shape constrained family)
• Confidence sets?
 ◦ Assuming shape constraint?
 ◦ Testing to see if a shape constraint is true?
What type of estimator?

- Maximum likelihood?
What type of estimator?

- Maximum likelihood?
- Least squares (or minimum contrast) estimator?
What type of estimator?

- Maximum likelihood?
- Least squares (or minimum contrast) estimator?
- Bayes (shape restricted, nonparametric)?
What type of estimator?

- Maximum likelihood?
- Least squares (or minimum contrast) estimator?
- Bayes (shape restricted, nonparametric)?
- Isotonization of kernel or other smooth estimators?
What type of estimator?

- Maximum likelihood?
- Least squares (or minimum contrast) estimator?
- Bayes (shape restricted, nonparametric)?
- Isotonization of kernel or other smooth estimators?
- Minimum distance?
What type of estimator?

- Maximum likelihood?
- Least squares (or minimum contrast) estimator?
- Bayes (shape restricted, nonparametric)?
- Isotonization of kernel or other smooth estimators?
- Minimum distance?
- Rearrangement methods?
What type of estimator?

- Maximum likelihood?
- Least squares (or minimum contrast) estimator?
- Bayes (shape restricted, nonparametric)?
- Isotonization of kernel or other smooth estimators?
- Minimum distance?
- Rearrangement methods?
- …
Monotone rearrangements estimator versus maximum likelihood?

Continuous setting
X_1, \ldots, X_n i.i.d. with density f on $[0, \infty)$ where $f \downarrow 0$.

The Maximum Likelihood Estimator is

$$\hat{f}_n = \arg\max_{f \in \mathcal{M}_1} \left\{ \sum_{i=1}^{n} \log f(X_i) \right\} = \text{the MLE}$$

$$= \text{Grenander estimator of } f.$$
From Grenander (1956), the MLE is characterized by the Fenchel conditions:

\[\mathbb{F}_n(x) \leq \hat{F}_n(x) \equiv \int_0^x \hat{f}_n(t) \, dt \quad \text{for all } x \in [0, \infty) , \quad \text{and} \]

\[\mathbb{F}_n(x) = \hat{F}_n(x) \quad \text{if and only if} \quad \hat{f}_n(x-) > \hat{f}_n(x+). \]

The geometric interpretation of these two conditions is

\[\hat{f}_n(x) = \left\{ \begin{array}{l} \text{the left-derivative of the slope at } x \text{ of the} \\ \text{least concave majorant } \hat{F}_n \text{ of } \mathbb{F}_n \end{array} \right\} \equiv \partial \mathcal{I}_1(\mathbb{F}_n) \]
Monotone rearrangement estimator

- Monotone rearrangement, continuous case: $\hat{f}^{\text{rearr}} \equiv R(\tilde{f}_n)$

where

$$Z_f(s) = \lambda\{x : f(x) \geq s\}, \quad R(f)(x) = Z_f^{-1}(x).$$
Monotone rearrangement estimator

• Monotone rearrangement, continuous case: \(\hat{f}^{\text{rearr}} \equiv R(\tilde{f}_n) \)
where
\[
Z_f(s) = \lambda \{ x : f(x) \geq s \}, \quad R(f)(x) = Z_f^{-1}(x).
\]

• Monotone rearrangement, discrete case: \(\hat{p}_n^{\text{rearr}} \equiv R(\tilde{p}_n) \)
where
\[
Z_p(s) = \# \{ i \in \mathbb{N}^+ : p(i) \geq s \}, \quad R(p)(i) = Z_p^{-1}(i).
\]
Estimation and Testing with Shape Constraints – p. 16/30
\{p_x : x \in \mathbb{N}\}, a non-increasing mass function on \mathbb{N}
• \(\{p_x : x \in \mathbb{N}\} \), a non-increasing mass function on \(\mathbb{N} \)

• \(\hat{p}_{n,x} \equiv n^{-1} \# \{ i \leq n : X_i = x \} \) for \(x \in \mathbb{N} \).
• $\{p_x : x \in \mathbb{N}\}$, a non-increasing mass function on \mathbb{N}

• $\hat{p}_{n,x} \equiv n^{-1}\#\{i \leq n : X_i = x\}$ for $x \in \mathbb{N}$.

• $Y_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x} - p_x)$ for $x \in \mathbb{N}$.
• \(\{p_x : x \in \mathbb{N}\} \), a non-increasing mass function on \(\mathbb{N} \)

• \(\hat{p}_{n,x} \equiv n^{-1} \#\{i \leq n : X_i = x\} \) for \(x \in \mathbb{N} \).

• \(Y_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x} - p_x) \) for \(x \in \mathbb{N} \).

• \(Y_{\text{rear}} \equiv \sqrt{n}(\hat{p}_{\text{rear}} - p_x) \)
• \(\{p_x : x \in \mathbb{N}\} \), a non-increasing mass function on \(\mathbb{N} \)

• \(\hat{p}_{n,x} \equiv n^{-1} \#\{i \leq n : X_i = x\} \) for \(x \in \mathbb{N} \).

• \(Y_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x} - p_x) \) for \(x \in \mathbb{N} \).

• \(Y_{\text{rear}}_{n,x} \equiv \sqrt{n}(\hat{p}_{\text{rear},n,x} - p_x) \)

• \(Y_{\text{Gren}}_{n,x} \equiv \sqrt{n}(\hat{p}_{\text{Gren},n,x} - p_x) \)
• \(\{ p_x : x \in \mathbb{N} \} \), a non-increasing mass function on \(\mathbb{N} \)

• \(\hat{p}_{n,x} \equiv n^{-1} \# \{ i \leq n : X_i = x \} \) for \(x \in \mathbb{N} \).

• \(Y_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x} - p_x) \) for \(x \in \mathbb{N} \).

• \(Y_{\text{rear}}_{n,x} \equiv \sqrt{n}(\hat{p}_{\text{rear},n,x} - p_x) \)

• \(Y_{\text{Gren}}_{n,x} \equiv \sqrt{n}(\hat{p}_{\text{Gren},n,x} - p_x) \)

• \(Y_x \) a Gaussian process on \(\mathbb{N} \) with \(\mathbb{E}Y_x = 0 \),

\[
\text{Cov}(Y_x, Y_{x'}) = p_x \delta_{x,x'} - p_x p_{x'}.
\]
• \(\{ p_x : x \in \mathbb{N} \} \), a non-increasing mass function on \(\mathbb{N} \)

• \(\hat{p}_{n,x} \equiv n^{-1} \# \{ i \leq n : X_i = x \} \) for \(x \in \mathbb{N} \).

• \(Y_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x} - p_x) \) for \(x \in \mathbb{N} \).

• \(Y_{\text{rear}}_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x} - p_x) \)

• \(Y_{\text{Gren}}_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x} - p_x) \)

• \(Y_x \) a Gaussian process on \(\mathbb{N} \) with \(EY_x = 0 \),

\[
\text{Cov}(Y_x, Y_{x'}) = p_x \delta_{x,x'} - p_x p_{x'}.
\]

• Define processes \(Y^R \) and \(Y^G \) in terms of \(Y \) as follows:
\[
\{p_x : x \in \mathbb{N}\}, \text{ a non-increasing mass function on } \mathbb{N}
\]

\[
\hat{p}_{n,x} \equiv n^{-1} \# \{i \leq n : X_i = x \} \text{ for } x \in \mathbb{N}.
\]

\[
Y_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x} - p_x) \text{ for } x \in \mathbb{N}.
\]

\[
Y_{\text{rear}}_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x} - p_x)
\]

\[
Y_{\text{Gren}}_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x} - p_x)
\]

\[
Y_x \text{ a Gaussian process on } \mathbb{N} \text{ with } EY_x = 0,
\]

\[
\text{Cov}(Y_x, Y_{x'}) = p_x \delta_{x,x'} - p_x p_{x'}.
\]

- Define processes \(Y^R\) and \(Y^G\) in terms of \(Y\) as follows:
 - Decompose \(\mathbb{N}\) as a disjoint union, \(\mathbb{N} = \bigcup_{k \geq 1} \{r_k, \ldots s_k\}\),
 \(r_k \leq s_k\),
 \(p_{r_k} = \cdots = p_x = \cdots = p_{s_k}\) and \(p_{s_k} > p_{r_{k+1}}, k \geq 1\).
\[\{ p_x : x \in \mathbb{N} \}, \text{ a non-increasing mass function on } \mathbb{N} \]

\[\hat{p}_{n,x} \equiv n^{-1} \#\{ i \leq n : X_i = x \} \text{ for } x \in \mathbb{N}. \]

\[Y_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x} - p_x) \text{ for } x \in \mathbb{N}. \]

\[Y_{\text{rear}}_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x}^{\text{rear}} - p_x) \]

\[Y_{\text{Gren}}_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x}^{\text{Gren}} - p_x) \]

\[Y_x \text{ a Gaussian process on } \mathbb{N} \text{ with } EY_x = 0, \]

\[\text{Cov}(Y_x, Y_{x'}) = p_x \delta_{x,x'} - p_x p_{x'}. \]

Define processes \(Y^R \) and \(Y^G \) in terms of \(Y \) as follows:

\(\circ \) Decompose \(\mathbb{N} \) as a disjoint union, \(\mathbb{N} = \bigcup_{k \geq 1} \{ r_k, \ldots s_k \} \),

\[r_k \leq s_k, \]

\[p_{r_k} = \cdots = p_x = \cdots = p_{s_k} \text{ and } p_{s_k} > p_{r_{k+1}}, k \geq 1. \]

\(\circ \) For each \(r_k, s_k \) pair, say \(r, s \) define \(Y^{(r,s)} = (Y_r, \ldots, Y_s) \).
\begin{itemize}
 \item \(\{ p_x : x \in \mathbb{N} \} \), a non-increasing mass function on \(\mathbb{N} \).
 \item \(\hat{p}_{n,x} \equiv n^{-1} \# \{ i \leq n : X_i = x \} \) for \(x \in \mathbb{N} \).
 \item \(Y_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x} - p_x) \) for \(x \in \mathbb{N} \).
 \item \(\hat{Y}_{\text{rear}}_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x}^{\text{rear}} - p_x) \)
 \item \(\hat{Y}_{\text{Gren}}_{n,x} \equiv \sqrt{n}(\hat{p}_{n,x}^{\text{Gren}} - p_x) \)
 \item \(Y_x \) a Gaussian process on \(\mathbb{N} \) with \(EY_x = 0 \),

\[
\text{Cov}(Y_x, Y_{x'}) = p_x \delta_{x,x'} - p_x p_{x'}.
\]
 \item Define processes \(Y^R \) and \(Y^G \) in terms of \(Y \) as follows:
 \begin{itemize}
 \item Decompose \(\mathbb{N} \) as a disjoint union, \(\mathbb{N} = \bigcup_{k \geq 1} \{ r_k, \ldots, s_k \} \),

 \[
 r_k \leq s_k,
 p_{r_k} = \cdots = p_x = \cdots = p_{s_k} \text{ and } p_{s_k} > p_{r_{k+1}}, k \geq 1.
 \]
 \item For each \(r_k, s_k \) pair, say \(r, s \) define \(Y^{(r,s)} = (Y_r, \ldots, Y_s) \).
 \item \(Y^R_x = \text{rear}(Y^{(r,s)})_x \) and \(Y^G_x = \text{Gren}(Y^{(r,s)})_x \).
 \end{itemize}
\end{itemize}
Theorem. (Jankowski and Wellner, 2009)

\[(Y_n, Y_n^R, Y_n^G) \Rightarrow (Y, Y^R, Y^G)\]

in \(\ell_2 \times \ell_2 \times \ell_2\) where \(\ell_2 \equiv \{\{y_x\} : \sum_{x\geq 0} y_x^2 < \infty\}\).

Corollary 1. If \(p_{x+1} < p_x\) for all \(x \geq 0\), then

\[(Y_n, Y_n^R, Y_n^G) \Rightarrow (Y, Y, Y)\]

in \(\ell_2 \times \ell_2 \times \ell_2\). In this case the three estimators are asymptotically equivalent.

Corollary 2. If \(p_x = (y + 1)^{-1}1_{\{0,\ldots,y\}}(x)\), then

\[(Y_n, Y_n^R, Y_n^G) \Rightarrow (Y, \text{rear}(Y), \text{Gren}(Y))\),

and ...
\[
E \|Y_n\|_2^2 = nE \left\{ \sum_{x=0}^{y} (\hat{p}_{n,x} - p_x)^2 \right\} \rightarrow E \|Y_x\|_2^2 = 1 - \frac{1}{y + 1},
\]

\[
E \|Y^R_n\|_2^2 = nE \left\{ \sum_{x=0}^{y} (\hat{p}^{\text{rear}}_{n,x} - p_x)^2 \right\} \rightarrow E \|\text{rear}(Y)\|_2^2 = 1 - \frac{1}{y + 1},
\]

\[
E \|Y^G_n\|_2^2 = nE \left\{ \sum_{x=0}^{y} (\hat{p}^{\text{Gren}}_{n,x} - p_x)^2 \right\} \rightarrow E \|\text{Gren}(Y)\|_2^2 = \frac{1}{y + 1}\sum_{x=1}^{y+1} \frac{1}{x} \sim \frac{\log(y + 1)}{y}.
\]

Hence \(\hat{p}^{\text{rear}}_n\) is (asymptotically) inadmissible!
What is the problem?

Proposition. \(\{p_x\} \) is monotone decreasing if and only if it is a mixture of uniform mass functions \((y + 1)^{-1}1_{\{0,\ldots,y\}}(x)\):

\[
p_x = \sum_{y=0}^{\infty} (y + 1)^{-1}1_{\{0,\ldots,y\}}(x)q_y
\]

for some probability mass function \(\{q_y\} \). The inversion formula is given by

\[
q_y = -(y + 1) \Delta p_y \equiv -(y + 1)(p_{y+1} - p_y).
\]

Thus we can define two estimators of \(q \):

\[
\hat{q}_{n,y}^{\text{rear}} \equiv -(y + 1)(\hat{p}_{n,y+1}^{\text{rear}} - \hat{p}_{n,y}^{\text{rear}}),
\]

\[
\hat{q}_{n,y}^{\text{Gren}} \equiv -(y + 1)(\hat{p}_{n,y+1}^{\text{Gren}} - \hat{p}_{n,y}^{\text{Gren}}).
\]
Define processes Z_n, Z^R_n, Z^G_n by

\[
Z_{n,x} \equiv \sqrt{n}(\hat{q}_{n,x} - q_x), \\
Z^R_{n,x} \equiv \sqrt{n}(\hat{q}_{n,x}^{\text{rearr}} - q_x), \\
Z^G_{n,x} \equiv \sqrt{n}(\hat{q}_{n,x}^{\text{Gren}} - q_x).
\]

We know that if $\sum_{x \geq 0} x^2 p_x = E(X^2) < \infty$, then

\[
Z_n \Rightarrow Z \equiv \{-(x + 1)\Delta Y_x\} \quad \text{in } \ell_2.
\]

- **Problem 1.** If $\sum_{x \geq 0} x^2 p_x < \infty$, does it hold that

\[
Z^R_n \Rightarrow Z^R \equiv \{-(x + 1)\Delta Y^R_x\} \quad \text{in } \ell_2; \\
Z^G_n \Rightarrow Z^G \equiv \{-(x + 1)\Delta Y^G_x\} \quad \text{in } \ell_2?
\]
Problem 2. If \(\{p_x\} \) is strictly decreasing, for what sequences \(a_n, b_n \) (with \(a_n/\sqrt{n} \to \infty \), \(b_n/\sqrt{n} \to \infty \)) does it hold that

\[
\begin{align*}
 a_n \| \hat{p}_n \text{_{rearr}} - \hat{p}_n \|_2 & \to_{p,a.s.} 0, \\
 b_n \| \hat{p}_n \text{_{Gren}} - \hat{p}_n \|_2 & \to_{p,a.s.} 0?
\end{align*}
\]
• Problem 2. If \(\{p_x\} \) is strictly decreasing, for what sequences \(a_n, b_n \) (with \(a_n/\sqrt{n} \to \infty, b_n/\sqrt{n} \to \infty \)) does it hold that

\[
\begin{align*}
a_n\|\hat{p}_n^{\text{rearr}} - \hat{p}_n\|_2 & \to_{p,a.s.} 0, \\
b_n\|\hat{p}_n^{\text{Gren}} - \hat{p}_n\|_2 & \to_{p,a.s.} 0?
\end{align*}
\]

• Problem 3. When (or in exactly what senses) does \(\hat{q}_n^{\text{Gren}} \) beat \(\hat{q}_n^{\text{rearr}} \)?
• Problem 2. If \(\{p_x\} \) is strictly decreasing, for what sequences \(a_n, b_n \) (with \(a_n/\sqrt{n} \to \infty \), \(b_n/\sqrt{n} \to \infty \)) does it hold that

\[
a_n ||\hat{p}_n^{\text{rearr}} - \hat{p}_n||_2 \to_{p,a.s.} 0, \\
b_n ||\hat{p}_n^{\text{Gren}} - \hat{p}_n||_2 \to_{p,a.s.} 0?
\]

• Problem 3. When (or in exactly what senses) does \(\hat{q}_n^{\text{Gren}} \) beat \(\hat{q}_n^{\text{rearr}} \)?

• Problem 4. What are the analogues of these results when \(\{p_s\} \) is \(k \)-monotone; i.e. when

\[
p_x = \sum_{y=0}^{\infty} \sum_{x'=0}^{y} \frac{(y - x')^{k-1}}{\sum_{x'=0}^{y} (y - x')^{k-1}} q_y
\]

for some probability mass function \(\{q_y\} \)?
3. Problems 5-6 from Gothenburg meeting

Known from Woodroofe and Sun (1993): in the continuous case, the Grenander estimator \hat{f}_n of a decreasing density is not consistent at zero:

$$\hat{f}_n(0) \to_d f_0(0)Y_1 \equiv f_0(0)\sup_{t>0} \frac{\bar{N}(t)}{t} \overset{d}{=} f_0(0)\mathcal{U}^{-1}$$

where $\mathcal{U} \sim \text{Uniform}(0, 1)$.

Question: If f_0 is not bounded at zero, what is the behavior of $\hat{f}_n(0)$?
Theorem. (Balabdaoui, Jankowski, Pavlides, Seregin and W, 2009): Suppose that F_0 is regularly varying at 0 with exponent $\gamma \in (0, 1]$. Then with a_n satisfying $nF_0(a_n) \to 1$ as $n \to \infty$,

$$na_n f_n(ta_n) \Rightarrow \hat{h}_\gamma(t) \quad \text{in } D[0, \infty)$$

where \hat{h}_γ is the right derivative of the least concave majorant of $N(t^\gamma)$ and N is a standard Poisson process.

Now suppose that f_0 is $k-$monotone on $(0, \infty)$ with $k \geq 2$; i.e.

$$f(x) = \int_0^\infty \frac{1}{y^k} (y - x)^{k-1} dG(y)$$

for some probability distribution G.

Problem 5. If f_0 is $k-$monotone, what is the behavior of $\hat{f}_n(0)$?

Problem 6. If f_0 is completely monotone (i.e. representable as a scale mixture of exponentials), what is the behavior of $\hat{f}_n(0)$?
4. Four more problems involving shape constraints ... very briefly