Semiparametric Regression Models for Panel Count Data: Comparing Two Estimators

Jon A. Wellner

University of Washington, Statistics
• joint work with Ying Zhang, University of Iowa

• Talk at IMS-WNAR meeting, Flagstaff, Arizona, June 27-29, 2006

• Email: jaw@stat.washington.edu
 http://www.stat.washington.edu/jaw/jaw.research.html
Outline

- A semiparametric regression model for panel count data
Outline

• A semiparametric regression model for panel count data
• Maximum Pseudo-likelihood and Maximum Likelihood Estimators
Outline

- A semiparametric regression model for panel count data
- Maximum Pseudo-likelihood and Maximum Likelihood Estimators
- Properties of the estimators when the Poisson assumption fails
Outline

- A semiparametric regression model for panel count data
- Maximum Pseudo-likelihood and Maximum Likelihood Estimators
- Properties of the estimators when the Poisson assumption fails
- Efficiency comparisons: when should we avoid the pseudo-MLE
Outline

• A semiparametric regression model for panel count data
• Maximum Pseudo-likelihood and Maximum Likelihood Estimators
• Properties of the estimators when the Poisson assumption fails
• Efficiency comparisons: when should we avoid the pseudo-MLE
• Cautions: identifiability issues and conditions for the theory
Outline

• A semiparametric regression model for panel count data
• Maximum Pseudo-likelihood and Maximum Likelihood Estimators
• Properties of the estimators when the Poisson assumption fails
• Efficiency comparisons: when should we avoid the pseudo-MLE
• Cautions: identifiability issues and conditions for the theory
• Further work and Open Problems
1. Introduction: a Semiparametric Regression Model for Panel Count Data

I. Model for the Counting Process

- **A Mean structure:** \(E\{\bar{N}(t) | Z\} = e^{\theta'Z} \Lambda(t), \)
 \(\Lambda \) monotone non-decreasing
1. Introduction: a Semiparametric Regression Model for Panel Count Data

I. Model for the Counting Process

• A Mean structure: $E\{N(t)|Z\} = e^{\theta'Z} \Lambda(t)$, \(\Lambda \) monotone non-decreasing

• B Poisson process assumption:
 \((N|Z) \sim \text{non-homogeneous Poisson process} \).
1. Introduction: a Semiparametric Regression Model for Panel Count Data

I. Model for the Counting Process

- **A** Mean structure: \(E\{N(t)|Z\} = e^{\theta'Z} \Lambda(t),\)
 \(\Lambda\) monotone non-decreasing

- **B** Poisson process assumption:
 \((N|Z) \sim\) non-homogeneous Poisson process.

- Parameters of interest: \((\theta, \Lambda)\)
 (or just \(\theta\)).
1. Introduction: a Semiparametric Regression Model for Panel Count Data

I. Model for the Counting Process

• **A** Mean structure: \(E\{N(t) \mid Z\} = e^{\theta'Z} \Lambda(t) \), \(\Lambda \) monotone non-decreasing

• **B** Poisson process assumption:
 \((N \mid Z) \sim \) non-homogeneous Poisson process.

• Parameters of interest: \((\theta, \Lambda)\)
 (or just \(\theta\)).

• Study estimators when the Poisson assumption B **fails**, but the conditional mean model given by A **holds**.
II. Observation Process and Covariate Distribution:

- \((K, T_K | Z) \sim G(\cdot | Z)\) conditionally independent of \((N | Z)\);
II. Observation Process and Covariate Distribution:

• \((K, T_K | Z) \sim G(\cdot | Z)\) conditionally independent of \((N | Z)\);

• \(K\) is the (random) number of observation times of the process \(N\);
II. Observation Process and Covariate Distribution:

• \((K, T_K|Z) \sim G(\cdot|Z)\) conditionally independent of \((N|Z)\);

• \(K\) is the (random) number of observation times of the process \(N\);

• \(T_K\) is a vector of ordered observation times:

\[
0 = T_{K,0} < T_{K,1} < \ldots < T_{K,K}
\]
II. Observation Process and Covariate Distribution:

- \((K, T_K | Z) \sim G(\cdot | Z)\) conditionally independent of \((N | Z)\);
- \(K\) is the (random) number of observation times of the process \(N\);
- \(T_K\) is a vector of ordered observation times:
 \[
 0 = T_{K,0} < T_{K,1} < \ldots < T_{K,K}
 \]
- \(Z \sim H\) on \(\mathbb{R}^d\)
II. Observation Process and Covariate Distribution:

- $(K, T_K|Z) \sim G(\cdot|Z)$ conditionally independent of $(N|Z)$;
- K is the (random) number of observation times of the process N;
- T_K is a vector of ordered observation times:
 \[0 = T_{K,0} < T_{K,1} < \ldots < T_{K,K} \]
- $Z \sim H$ on \mathbb{R}^d
- No assumptions about G or H
III. Data and Primary Goal:

- Data:

\[X = (Z, K, T_K, \mathbb{N}(T_{K,1}), \ldots, \mathbb{N}(T_{K,K})) \]
\[\equiv (Z, K, T_K, \mathbb{N}_K) \]

We observe \(X_1, \ldots, X_n \) i.i.d. as \(X \).
III. Data and Primary Goal:

- **Data:**

\[
X = (Z, K, T_K, \mathbb{N}(T_{K,1}), \ldots, \mathbb{N}(T_{K,K}))
\]

\[\equiv (Z, K, T_K, \mathbb{N}_K)\]

We observe \(X_1, \ldots, X_n\) i.i.d. as \(X\).

- **Pictures!**
III. Data and Primary Goal:

• Data:

\[X = (Z, K, \underline{T}_K, \underline{N}(T_{K,1}), \ldots, \underline{N}(T_{K,K})) \equiv (Z, K, \underline{T}_K, \underline{N}_K) \]

We observe \(X_1, \ldots, X_n \) i.i.d. as \(X \).

• Pictures!

• Based on \(X_1, \ldots, X_n \) i.i.d. as \(X \), estimate \((\theta, \Lambda) \)
Fig. 1: Counting process (green) and sampling process (red)
Figure 2. Counting process (green) and sampling process (red)
2. Maximum Pseudo-likelihood

and Maximum Likelihood Estimators

A. Maximum pseudo-likelihood.

- use the Poisson marginal distributions of \mathbb{N},

$$
P(\mathbb{N}(t) = k | Z) = \frac{\Lambda(t | Z)^k}{k!} \exp(-\Lambda(t | Z))
$$

and ignore dependence between $\mathbb{N}(t_1)$ and $\mathbb{N}(t_2)$ to obtain the pseudo-likelihood

$$
lp_n(\theta, \Lambda) = \sum_{i=1}^{n} \sum_{j=1}^{K_i} \left\{ \mathbb{N}^{(i)}(T^{(i)}_{K_i,j}) \log \Lambda(T^{(i)}_{K_i,j}) + \mathbb{N}^{(i)}(T^{(i)}_{K_i,j}) \theta' Z_i - e^{\theta' Z_i} \Lambda(T^{(i)}_{K_i,j}) \right\}.
$$
Then
\[
(\hat{\theta}_{ps}^n, \hat{\Lambda}_{ps}^n) \equiv \arg\max_{\theta, \Lambda} l_n^{ps}(\theta, \Lambda).
\]

Implement in two steps:
\[
\hat{\Lambda}_{ps}^n (\cdot, \theta) \equiv \arg\max_{\Lambda} l_n^{ps}(\theta, \Lambda),
\]
and define
\[
l_n^{ps, profile}(\theta) \equiv l_n^{ps}(\theta, \hat{\Lambda}_{ps}^n (\cdot, \theta)).
\]
Then
\[
\hat{\theta}_{ps}^n = \arg\max_{\theta} l_n^{ps, profile}(\theta),
\]
and
\[
\hat{\Lambda}_{ps}^n = \hat{\Lambda}_{ps}^n (\cdot, \hat{\theta}_{ps}^n).
\]
Let $t_1 < \ldots < t_m$ denote the ordered distinct observation time points in the collection of all observations times,
$\{T_{K_i,j}^{(i)}, j = 1, \ldots, K_i, i = 1, \ldots, n\}$, and set

\[
\begin{align*}
 w_l &= \sum_{i=1}^{n} \sum_{j=1}^{K_i} 1_{[T_{K_i,j}^{(i)} = t_l]}, \\
 \overline{N}_l &= \frac{1}{w_l} \sum_{i=1}^{n} \sum_{j=1}^{K_i} \overline{N}_{K_i,j}^{(i)} 1_{[T_{K_i,j}^{(i)} = t_l]}, \\
 \overline{A}_l(\theta, Z) &= \frac{1}{w_l} \sum_{i=1}^{n} \sum_{j=1}^{K_i} \exp(\theta' Z^{(i)}) 1_{[T_{K_i,j}^{(i)} = t_l]}.
\end{align*}
\]

Then the cumulative sum diagram is given by

\[
\{(\sum_{l \leq i} w_l \overline{A}_l(\theta, Z), \sum_{l \leq i} w_l \overline{N}_l)\}_{i=1}^{m}
\]
\[
\Lambda_{n}^{ps}(\cdot, \theta) = \text{left-derivative of } \text{Greatest Convex Minorant}
\]
\[
\text{of } \left\{ \left(\sum_{l \leq i} w_{l} A_{l}(\theta, Z), \sum_{l \leq i} w_{l} N_{l} \right) \right\}_{i=1}^{m}
\]
\[
= \max_{i \leq l} \min_{j \geq l} \frac{\sum_{i \leq p} w_{p} N_{p}}{\sum_{i \leq p} w_{p} A_{p}(\theta, Z)} \text{ at } t_{l},
\]

which is easy to compute.
B. Maximum likelihood: use the independence of the increments
\(\Delta N(s, t] \equiv N(t) - N(s) \), and the Poisson distribution of these
increments of \(N \),

\[
P(\Delta N(s, t] = k|Z) = \frac{[\Delta \Lambda((s, t]|Z)]^k}{k!} \exp(-\Delta \Lambda((s, t]|Z))
\]

to obtain the log-likelihood:

\[
l_n(\theta, \Lambda) = \sum_{i=1}^{n} \sum_{j=1}^{K_i} \left\{ \Delta N^{(i)}((T^{(i)}_{K_i,j-1}, T^{(i)}_{K_i,j}) \cdot \log \Delta \Lambda((T^{(i)}_{K_i,j-1}, T^{(i)}_{K_i,j}))
\right.
\]

\[
+ \Delta N^{(i)}((T^{(i)}_{K_i,j-1}, T^{(i)}_{K_i,j}))\theta' Z_i
\]

\[
- \exp(\theta' Z_i)\Lambda((T^{(i)}_{K_i,j-1}, T^{(i)}_{K_i,j})) \right\}
\]
Then the MLE is \((\hat{\theta}_n, \hat{\Lambda}_n) \equiv \arg\max_{\theta, \Lambda} l_n(\theta, \Lambda)\).

Implement this maximization in two steps (profile likelihood):

\[\hat{\Lambda}_n(\cdot, \theta) \equiv \arg\max_{\Lambda} l_n(\theta, \Lambda), \]

and define \(l_n^{\text{profile}}(\theta) \equiv l_n(\theta, \hat{\Lambda}_n(\cdot, \theta))\). Then

\[\hat{\theta}_n = \arg\max_{\theta} l_n^{\text{profile}}(\theta), \quad \hat{\Lambda}_n = \hat{\Lambda}_n(\cdot, \hat{\theta}_n). \]

Computation of the (profile) “estimator” \(\hat{\Lambda}_n(\cdot, \theta)\) is hard, but possible: iterative convex minorant algorithm.
3. Properties of the Estimators
when the Poisson Assumption Fails

Theorem 1. If assumption A holds, then (under further integrability, boundedness, and identifiability hypotheses):

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} Z \sim N_d \left(0, A^{-1} B (A^{-1})' \right),$$

and

$$\sqrt{n}(\hat{\theta}_{n}^{ps} - \theta_0) \xrightarrow{d} Z^{ps} \sim N_d \left(0, (A^{ps})^{-1} B^{ps} ((A^{ps})^{-1})' \right)$$

where $A, B, A^{ps},$ and B^{ps} are given by:
\[B = E m^*(\theta_0, \Lambda_0; X) \otimes^2 \]

\[= E \left\{ \sum_{j,j' = 1}^K C_{j,j'}(Z) \left[Z - \frac{E (Z e^{\theta'_0 Z} | K, T_{K,j,j'})}{E (e^{\theta'_0 Z} | K, T_{K,j,j'})} \right]^2 \right\} \]

\[A = E \left\{ \sum_{j = 1}^K \Delta \Lambda_0 K_j e^{\theta'_0 Z} \left[Z - \frac{E (Z e^{\theta'_0 Z} | K, T_{K,j,j-1})}{E (e^{\theta'_0 Z} | K, T_{K,j,j-1})} \right]^2 \right\} , \]

\[C_{j,j'}(Z) = \text{Cov} [\Delta N_{K,j}, \Delta N_{K,j'} | Z, K, T_K] . \]
\[
B^{ps} = E m^{*ps}(\theta_0, \Lambda_0; X)^{\otimes 2}
\]
\[
= E \left\{ \sum_{j,j'=1}^{K} C_{j,j'}^{ps}(Z) \left[Z - \frac{E (Ze^{\theta_0}Z|K,T_{K,j})}{E (e^{\theta_0}Z|K,T_{K,j})} \right] \right\}^{\otimes 2},
\]
\[
A^{ps} = E \left\{ \sum_{j=1}^{K} \Lambda_0 K_j e^{\theta_0}Z \left[Z - \frac{E (Ze^{\theta_0}Z|K,T_{K,j})}{E (e^{\theta_0}Z|K,T_{K,j})} \right] \right\}^{\otimes 2},
\]
\[
C_{j,j'}^{ps}(Z) = \text{Cov} [N_{K,j}, N_{K,j'}|Z, K, T_{K,j,j'}],
\]

If the Poisson process assumption B holds,
\[
A = B = I(\theta),
\]
and \(\hat{\theta}_n \) is (asymptotically) \textbf{efficient}.
4. Efficiency comparisons:

- **Scenario 1:** Suppose that:
4. Efficiency comparisons:

- **Scenario 1:** Suppose that:
 - \mathbb{N} is a Poisson process, $\Lambda_0(t) = \lambda t$
4. Efficiency comparisons:

- **Scenario 1:** Suppose that:
 - N is a Poisson process, $\Lambda_0(t) = \lambda t$
 - (K, T_K) independent of Z.
4. Efficiency comparisons:

- **Scenario 1:** Suppose that:
 - N is a Poisson process, $\Lambda_0(t) = \lambda t$
 - (K, T_K) independent of Z.
 - $(T_K | K) \sim$ order statistics of K i.i.d. $U[0, M]$ rv’s
4. Efficiency comparisons:

- **Scenario 1:** Suppose that:
 - \(\mathbb{N} \) is a Poisson process, \(\Lambda_0(t) = \lambda t \)
 - \((K, T_K)\) independent of \(Z \).
 - \((T_K | K) \sim \) order statistics of \(K \) i.i.d. \(U[0, M] \) rv’s
 - \(K \sim \) one of:
 - (a) Degenerate at \(k_0 \)
 - (b) (Shifted by 1) Poisson(\(\gamma \))
 - (c) Discrete zeta(\(\alpha \)); \(P(K = k) = \frac{1/k^\alpha}{\zeta(\alpha)}, \zeta(\alpha) = \sum_{j=1}^{\infty} j^{-\alpha} \)
4. Efficiency comparisons:

- **Scenario 1:** Suppose that:
 - N is a Poisson process, $\Lambda_0(t) = \lambda t$
 - (K, T_K) independent of Z.
 - $(T_K|K) \sim$ order statistics of K i.i.d. $U[0, M]$ rv's
 - $K \sim$ one of:
 (a) Degenerate at k_0
 (b) (Shifted by 1) Poisson(γ)
 (c) Discrete zeta(α); $P(K = k) = \frac{1}{k^\alpha \zeta(\alpha)}$, $\zeta(\alpha) = \sum_{j=1}^{\infty} j^{-\alpha}$

\[
ARE(pseudo, mle) = \frac{[E(K/2)]^2}{E \left\{ \frac{K}{K+1} \right\} E \left\{ \frac{K(2K+1)}{6} \right\}}
\]
Case (a):

\[ARE(pseudo, mle)(k_0) = \frac{3}{4} \frac{k_0 + 1}{k_0 + 1/2} \]
• Case (a):

\[ARE(pseudo, mle)(k_0) = \frac{3}{4} \frac{k_0 + 1}{k_0 + 1/2}. \]

• Case (b):

\[ARE(pseudo, mle)(\gamma) = \frac{3}{2} \frac{(\gamma + 1)^2}{(2\gamma^2 + 7\gamma + 3)E_\gamma \left\{ \frac{K}{K+1} \right\}}. \]
• **Case (a):**

\[
ARE(pseudo, \text{mle})(k_0) = \frac{3}{4} \frac{k_0 + 1}{k_0 + 1/2}.
\]

• **Case (b):**

\[
ARE(pseudo, \text{mle})(\gamma) = \frac{3}{2} \frac{(\gamma + 1)^2}{(2\gamma^2 + 7\gamma + 3) E_{\gamma} \left\{ \frac{K}{K+1} \right\}}.
\]

• **Case (c):**

\[
ARE(pseudo, \text{mle})(\alpha) = \frac{3}{2} \frac{\zeta(\alpha - 1)}{\{2\zeta(\alpha - 2) + \zeta(\alpha - 1)\} E_{\alpha} \left\{ \frac{K}{K+1} \right\}}.
\]
Figure 3. Relative efficiency, scenario 1(a): K degenerate at k_0 as a function of k_0.

Semi-parametric Regression Models for Panel Count Data: Comparing Two Estimators – p. 20/32
Figure 4. Relative efficiency, scenario 1(b): K shifted Poisson as a function of γ
Figure 5. Relative efficiency, scenario 1(c): K discrete zeta
Scenario 2: Suppose that:

- N is a Mixed-Poisson (Negative Binomial) process,
 \[\Lambda_0(t) = \lambda t \]
Scenario 2: Suppose that:

- \(\mathbb{N} \) is a Mixed-Poisson (=Negative Binomial) process, \(\Lambda_0(t) = \lambda t \)
- \((K, T_K)\) independent of \(Z\).
Scenario 2: Suppose that:

- \mathbb{N} is a Mixed-Poisson (=Negative Binomial) process, $\Lambda_0(t) = \lambda t$
- (K, T_K) independent of Z.
- $(\underline{T}_K|K) \sim$ order statistics of K i.i.d. $U[0, M]$ rv’s
Scenario 2: Suppose that:

- N is a Mixed-Poisson (=Negative Binomial) process, $\Lambda_0(t) = \lambda t$
- (K, T_K) independent of Z.
- $(T_K|K) \sim$ order statistics of K i.i.d. $U[0, M]$ rv’s
- $K \sim$ one of:
 - (a) Degenerate at k_0
 - (b) (Shifted by 1) Poisson(γ)
 - (c) Discrete zeta(α); $P(K = k) = \frac{1/k^\alpha}{\zeta(\alpha)}$, $\zeta(\alpha) = \sum_{j=1}^{\infty} j^{-\alpha}$
\[
\text{ARE}(\text{pseudo, mle})(\text{NegBin}) = \frac{\left(1 + a \frac{E\left(\frac{K}{K+2}\right)}{E\left(\frac{K}{K+1}\right)}\right)}{\left(1 + a \frac{E\left(\frac{K(3K+1)}{12}}{E\left(\frac{K(2K+1)}{6}\right)}\right)} \cdot \text{ARE}(\text{pseudo, mle})(\text{Poisson}).
\]

where \(a \equiv q/p = \lambda M/\gamma \).
Figure 6. Relative efficiency, scenario 2, as a function of q/p
Figure 7. Relative efficiency, scenario 2, as a function of κ
5. Cautions: identifiability issues
and conditions for the theory

- Hidden identifiability issues!
5. Cautions: identifiability issues and conditions for the theory

• Hidden identifiability issues!
• Example: suppose that
5. Cautions: identifiability issues
and conditions for the theory

- Hidden identifiability issues!
- Example: suppose that
 \[\Lambda_0(t) = t^2, \quad \beta_0 = 0 \]
5. Cautions: identifiability issues

and conditions for the theory

- Hidden identifiability issues!
- Example: suppose that
 \[\Lambda_0(t) = t^2, \quad \beta_0 = 0 \]
 \[\Lambda(t) = t, \quad \beta = 1 \]
5. Cautions: identifiability issues and conditions for the theory

- Hidden identifiability issues!
- Example: suppose that
 - $\Lambda_0(t) = t^2, \beta_0 = 0$
 - $\Lambda(t) = t, \beta = 1$
 - $K = 1$ with prob. 1; $T = e^Z$ with probability 1
5. Cautions: identifiability issues

and conditions for the theory

• Hidden identifiability issues!

• Example: suppose that

 ○ $\Lambda_0(t) = t^2$, $\beta_0 = 0$

 ○ $\Lambda(t) = t$, $\beta = 1$

 ○ $K = 1$ with prob. 1; $T = e^Z$ with probability 1

 ○ Then $\Lambda_0(T)e^{\beta_0 Z} = T^2 = \Lambda(T)e^{\beta Z}$ almost surely and the model is not identifiable.
5. Cautions: identifiability issues
and conditions for the theory

• Hidden identifiability issues!

• Example: suppose that
 ◦ $\Lambda_0(t) = t^2$, $\beta_0 = 0$
 ◦ $\Lambda(t) = t$, $\beta = 1$
 ◦ $K = 1$ with prob. 1; $T = e^Z$ with probability 1
 ◦ Then $\Lambda_0(T)e^{\beta_0 Z} = T^2 = \Lambda(T)e^{\beta Z}$ almost surely and the model is not identifiable.

• Conditions needed to be able estimate both Λ and θ!
• Some measures:

\[\nu_1(B \times C) = \int_C \sum_{k=1}^{\infty} P(K = k \mid Z = z) \sum_{j=1}^{k} P(T_{k,j} \in B \mid K = k, Z = z) dH(z), \]

\[\mu_1(B) = \nu_1(B \times \mathbb{R}^d) \]

\[\nu_2(B_1 \times B_2 \times C) = \int_C \sum_{k=1}^{\infty} P(K = k \mid Z = z) \cdot \sum_{j=1}^{k} P(T_{k,j-1} \in B_1, T_{k,j} \in B_2 \mid K = k, Z = z) dH(z), \]

\[\mu_2(B_1 \times B_2) = \nu_2(B_1 \times B_2 \times \mathbb{R}^d) \]
• $C_2^{ps}: \mu_1 \times H << \nu_1$ (needed for identifiability - consistency of Poisson-based pseudo MLE)
• $C_2^{ps}: \mu_1 \times H << \nu_1$ (needed for identifiability - consistency of Poisson-based pseudo MLE)

• $C_2: \mu_2 \times H << \nu_2$ (needed for identifiability - consistency of Poisson-based MLE)
• Conditions C1-C7 needed for consistency.
• Conditions C1-C7 needed for consistency.
• Conditions C1-C7 + C8-C10 + C13 needed for asymptotic normality of the Poisson-based pseudo MLE
• Conditions C1-C7 needed for consistency.
• Conditions C1-C7 + C8-C10 + C13 needed for asymptotic normality of the Poisson-based pseudo MLE.
• Conditions C1-C7 + C8-C12 + C14 needed for asymptotic normality of the Poisson-based pseudo MLE.
• **Conditions C1-C7** needed for consistency.

• **Conditions C1-C7 + C8-C10 + C13** needed for asymptotic normality of the Poisson-based pseudo MLE

• **Conditions C1-C7 + C8-C12 + C14** needed for asymptotic normality of the Poisson-based pseudo MLE.

• See **Technical Report 488, UW Department of Statistics**
• Conditions C1-C7 needed for consistency.
• Conditions C1-C7 + C8-C10 + C13 needed for asymptotic normality of the Poisson-based pseudo MLE
• Conditions C1-C7 + C8-C12 + C14 needed for asymptotic normality of the Poisson-based pseudo MLE.
• See Technical Report 488, UW Department of Statistics
• Weaker hypotheses needed!
6. Further work and Open Problems

- Weaker hypotheses for asymptotic normality?
6. Further work and Open Problems

- Weaker hypotheses for asymptotic normality?
- Better understanding of identifiability issues?
6. Further work and Open Problems

- Weaker hypotheses for asymptotic normality?
- Better understanding of identifiability issues?
- Further efficiency comparisons when \((K, T_K)\) is dependent on \(Z\)?
6. Further work and Open Problems

• Weaker hypotheses for asymptotic normality?
• Better understanding of identifiability issues?
• Further efficiency comparisons when \((K, T_K)\) is dependent on \(Z\)?
• Large and small sample behavior of \(\hat{\Lambda}^{ps}\) and \(\hat{\Lambda}\)?
6. Further work and Open Problems

• Weaker hypotheses for asymptotic normality?
• Better understanding of identifiability issues?
• Further efficiency comparisons when \((K, T_K)\) is dependent on \(Z\)?
• Large and small sample behavior of \(\hat{\Lambda}^{ps}\) and \(\hat{\Lambda}\)?
• Better algorithms for computation of the MLE \(\hat{\theta}\)?
6. Further work and Open Problems

- Weaker hypotheses for asymptotic normality?
- Better understanding of identifiability issues?
- Further efficiency comparisons when (K, T_K) is dependent on Z?
- Large and small sample behavior of $\hat{\Lambda}^{ps}$ and $\hat{\Lambda}$?
- Better algorithms for computation of the MLE $\hat{\theta}$?
 - Pseudo MLE of Λ, no covariates: Sun and Kalbfleisch (1995)
6. Further work and Open Problems

- Weaker hypotheses for asymptotic normality?
- Better understanding of identifiability issues?
- Further efficiency comparisons when (K, T_K) is dependent on Z?
- Large and small sample behavior of Λ_{ps} and Λ?
- Better algorithms for computation of the MLE $\hat{\theta}$?
 - Pseudo MLE of Λ, no covariates: Sun and Kalbfleisch (1995)
 - MLE of Λ, no covariates: Zhang and Wellner (2000)
6. Further work and Open Problems

• Weaker hypotheses for asymptotic normality?
• Better understanding of identifiability issues?
• Further efficiency comparisons when (K, T_K) is dependent on Z?
• Large and small sample behavior of $\hat{\Lambda}^{ps}$ and $\hat{\Lambda}$?
• Better algorithms for computation of the MLE $\hat{\theta}$?
 ◦ Pseudo MLE of Λ, no covariates: Sun and Kalbfleisch (1995)
 ◦ MLE of Λ, no covariates: Zhang and Wellner (2000)
 ◦ pseudo MLE $\hat{\theta}^{ps}$; Zhang (2000)
7. Selected references

7. Selected references

7. Selected references

7. Selected references

