Lecture 12 (CR.3)

Basic picture of regression:

\[y = \alpha + \beta x \]

\[(x_3, y_3) \]

\[\hat{y}_3 = \alpha + \beta x_3 \]

\[(x_3, \hat{y}_3) \]

\[\text{error} = [y_3 - \alpha - \beta x_3] \]

\[\hat{\beta} = \frac{x\bar{y} - \bar{x}\bar{y}}{x^2 - \bar{x}^2} \]

\[\hat{\alpha} = \bar{y} - \hat{\beta} \bar{x} \]

\[z = \bar{y} - \hat{\beta} \bar{x} \]

Think of \(\alpha = \text{Arterial Blood Pressure (ABP)} \) measured noninvasively

\(\alpha = \text{Intracranial Pressure (ICP)} \) measured invasively.

There is a different (more useful?) way of looking at this via variance.

This way, we will arrive at quantities called \(R^2 \) and \(s_e \), which together assess how good the fit is.

- Suppose we measure Table Length, \(y \).
- Repeat, and histogram:

\[s_y = \sqrt{\frac{s_{yy}}{n-1}} \sim 0 \]

- One may report:

True length = 150±10 cm

- Now, suppose you are unhappy with the large \(s_y \).
- You may wonder, could some of that variability be due to something else that is varying every time you make a measurement of \(y \).
- \(\alpha = \text{temperature} \) ? \(\text{humidity} \)?
- If so, then by measuring \(y \) and \(\alpha \), we may be able to reduce the \(\pm \) of our report, by specifying \(y \) at a given \(\alpha \).
Analysis of variance (ANOVA):

How much of the variation in y is due to the linear relationship between y and x?

Variance of $y = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \bar{y})^2$

$SS_{total} = \sum_{i=1}^{n} (y_i - \bar{y})^2$

$SS_{explained} = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$

$SS_{unexplained} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

Total variation in y.

Variation in y explained by (or due to) x.

Variation in y unexplained by x.

$SS_{total} = SS_{explained} + SS_{unexplained}$

$\text{SST} = \frac{SS_{explained}}{n-1} + \frac{SS_{unexplained}}{n-2}$

Variability is reduced from $\pm (10)^2$ to something smaller, say $\pm (3)^2$.

Therefore, $\frac{SS_{explained}}{SS_{total} \times 100}$, called R^2, measures how good the fit is.

Percent variation in y, explained by x.

$(\text{Bad Model/fit}) 0 < R^2 < 1$ (Good Model/fit)

The other piece, $SS_{unexplained} = SSE$, is a sum-squared, and so can be "Averaged" to provide a measure of typical error. Specifically, $\sqrt{\frac{SSE}{n-2}} = \hat{\sigma}$ = Std. dev. of errors ~ typical error.

Typo in book, p. 121

Move on R^2, $\hat{\sigma}$ later.
Picture for the above decomposition: (ANOVA)

When there is a linear relationship between x and y,
then some portion of the variation in y can be attributed
to (or explained by) x. That portion is $SS_{\text{exp.}}$, and the (unexplained) rest is $SS_{\text{unexp}} = SSE$. So the variability in y, SST, is reduced to SSE.
Example (from previous lecture):

\[\text{SST} = \sum_{i}(y_i - \overline{y})^2 = \ldots = 6251.2 \]

\[\text{SSE} = \sum_{i}(y_i - \hat{y}_i)^2 = \text{last column in table in prev. lecture.} \]

\[= (-1.5)^2 + (5.1)^2 + (11.5)^2 + (-30.3)^2 + (65.1)^2 = 1307 \]

\[R^2 = \frac{\text{Coeff. of det.}}{\text{SST - SSE}} = \frac{6251.2 - 1307}{6251.2} = 0.79. \]

Conclusion: 79\% of the variability (or variation) in \(y \) (weight) is due to (can be explained by)
the linear relation with \(x \) (height).

\[R^2 \]

Note: \(R^2 \) is not a square of anything; at least not generally. Later, you'll see why it's written
symbol as \(R^2 \), or even as \(r^2 \) (e.g., in books).

\[\text{It is coefficient of determination} \]

The other piece of the decomposition:

\[s_e = \sqrt{\frac{1307}{5-2}} = 20.9 \text{ pounds} \]

Conclusion: The typical deviation of the data about the fit
(i.e. error) is about 21 pounds.
Come up with another example of x and y (like ABP and ICP), where regression can help in predicting y from x in a situation where without regression the "cost" of measuring y directly is extremely high (like ICP).

Suppose all we have are data on a single variable y: y_i, $i = 1, 2, 3, \ldots, n$. Show that the predictor that minimizes SSE is the sample mean \bar{y}. Hint: let Y denote the prediction, and the minimize SSE.

Consider the following decomposition:

$$
\sum_i (y_i - \bar{y})^2 = \sum_i [(\hat{y}_i - \bar{y}) + (y_i - \hat{y}_i)]^2
$$

$$
= \sum_i (y_i - \bar{y})^2 + \sum_i (y_i - \hat{y}_i)^2 + 2 \sum_i (y_i - \bar{y})(y_i - \hat{y}_i)
$$

Show that the last term is zero if $\hat{y}_i = \hat{\beta} x_i$.

Hint: use $\hat{y} = \bar{y} - \hat{\beta} \bar{x}$ to simplify the expression. First, only when close to the end, use $\hat{\beta} = \frac{\bar{x}y - \bar{x}\bar{y}}{\bar{x}^2 - \frac{1}{n}}$.

For the data shown in problem 3.22

a) Compute the OLS fit

b) Compute the total variation, SST.

c) Decompose it into explained and unexplained.

d) Compute R^2, and interpret (in English).

e) Compute the std. dev. of errors, and interpret (in English).

All by hand. You may use computer to compute sums, means, std. deviations, but not a function that does regression or analysis of variance.