We have developed a hypothesis testing procedure that gives a p-value (i.e., prob. of observing more extreme data than that observed). The p-value is useful by itself, and more people these days report it as a measure of evidence from data. But traditionally (i.e., old style!) one compares it with \(\alpha \) to make a reject/no-reject decision. So, the value of \(\alpha \) is important.

We know that it's the largest prob. at which we feel "confident" to reject \(H_0 \) in favor of \(H_1 \). But there is more:

Suppose we are testing \(H_0: \mu = \mu_0 \) vs. \(H_1: \mu > \mu_0 \).

We assume \(H_0 \) True (i.e., \(\mu = \mu_0 \)), then compute a p-value.

If p-value < \(\alpha \), then Reject \(H_0 \) in favor of \(H_1 \).

So, every time p-value < \(\alpha \), we reject.

How often will that happen?

For \(H_0, H_1 \) given here

\[
\text{p-value} = \text{prob}(\bar{x} > \bar{x}_{\text{obs}})
\]

\(\alpha \)

How frequently is \(\bar{x} \) in the red? \(\alpha \)

\[\text{Note: } \alpha = \text{prob}(\text{p-value} < \alpha) \]

So, \(\alpha = \text{prob}(\text{Data Reject } H_0 \text{ in favor of } H_1 \mid H_0 = \text{T}) \) "Bad" error

Type I error

"False Alarm Rate"

(Convicting an innocent person)

This is how you decide on \(\alpha \).

How much bad error can you tolerate in the long run?
Why not set $\alpha = 0$, so that we will not have any bad (Type I) errors?

Because there is another kind of error:

$$\beta = \text{prob} \left(\text{Data cannot reject } H_0 \mid H_0 = \text{False} \right)$$

in favor of H_1

Type II

(Releasing a guilty person.)

Setting $\alpha = 0 \implies \beta = 1$.

α, β (the probs of the 2 types of errors) have a complex but mostly inverse relationship, depending on n (p. 389-391).

So, given that α is the prob of the bad error, we generally set α at a fixed, but low, value.

Obviously, this will lead to some nonzero β, and it is important to compute it for your own specific problem.

Sometimes, people look at $1 - \beta$ (instead of β).

$$1 - \beta = \text{power} = \text{prob}(\text{Rejecting } H_0 \mid H_0 = \text{False})$$

(Convincing a guilty person).

If there is time, we'll return to power.
Suppose you are testing whether a drug has \(\mu > 0 \).

So:
\[H_0: \mu \leq 0, \quad H_1: \mu > 0 \]

Suppose you compute the p-value and find p-value > \(\alpha \), i.e., there is no evidence that \(\mu > 0 \). If you repeat the experiment many times, eventually you will find p-value < \(\alpha \), i.e., there is evidence that \(\mu > 0 \). This will happen (at most) \(\alpha \% \) of the time even if, in fact, \(\mu < 0 \). I.e. \(\alpha \% \) of the time, you will make a type 1 error.
Another example of how fixing α is dangerous.

Dead Thinking Salmon!

There exist other decision-making frameworks which avoid such problems (e.g. check out
- multiple hypothesis testing
- False Discovery Rate)

Alternatively, in some situations, one can simply report the p-value, without comparing it to α.

In this class, we will continue to compare it with α, but be aware of this "defect"
This lecture was a bit different in that you did not learn any new formulas! But it's a very important lecture because it reveals what α is, and the dangers of using the hyp. test methodology carelessly.

We are done with 1-sample and 2-sample, z and t-tests, for paired and unpaired data, but all of that has dealt with the pop. means. What about pop. proportions?

Recall 1-sample test for μ: \(H_0: \mu = \mu_0 \), \(H_1: \mu \neq \mu_0 \), distr. = \(z, t \).

Statistic: \(t_{\text{obs}} = \frac{X_{\text{obs}} - \mu_0}{\sigma/\sqrt{n}} \), p-value = ...

Compare with the C.I. for μ: \(\bar{x} \pm z^* \frac{SE}{\sqrt{n}} \), \(\bar{x} \pm t^* \frac{S}{\sqrt{n}} \)

Recall 1-sample C.I. for \(p \): \(p \pm z^* \sqrt{\frac{p(1-p)}{n}} \)

⇒ 1-sample z-test for \(p \): \(H_0: \pi = \pi_0 \), \(H_1: \pi \neq \pi_0 \)

Statistic: \(Z_{\text{obs}} = \frac{p_{\text{obs}} - \pi_0}{\sqrt{\pi_0(1-\pi_0)/n}} \), p-value = ...

\(\not\Rightarrow \) p! Because we assume \(H_0 = \text{True} \), i.e. \(\pi = \pi_0 \)!
By now, we know how to test the difference between 2 means:

\[H_0: \mu_1 - \mu_2 = \Delta \quad , \quad H_1: \mu_1 - \mu_2 \neq \Delta \quad \text{dist}: Z, t. \]

2 props:

\[H_0: \pi_1 = \pi_2 = \cdots = \pi_\Delta \quad , \quad H_1: \pi_1 - \pi_2 \neq 0 \quad \text{dist}: Z \]

When we compare 2 props from 2 populations \((\pi_1, \pi_2)\), one implication is that each population can be described with one proportion. That means that the population consists of 2 groups (e.g., boy/girl), because when we estimate the proportion of one group in one of the pops (say \(\pi_1\), boys in Northern hemisphere), then the proportion of the other group (say \(\pi_2\), girls in Northern hemisphere) is estimated automatically, because \(\pi_2 = 1 - \pi_1\). What the tests do for us is to compare \(\pi_1\) boys in Northern with \(\pi_1\) boys in Southern hemisphere.

What if we have 1 population, but multiple (k) groups?

Note: The 2-group case can be thought of as the population consisting of 1 binary variable. Similarly, the k-group case can be thought of as a categorical variable with k levels.

The \(H_0 / H_1\) we can test is this:

\[H_0: \pi_1 = \pi_{01}, \pi_2 = \pi_{02}, \cdots, \pi_k = \pi_{0k} \quad \text{dist: Chi-sq} \]

\[H_1: \text{At least one of } \pi_i \text{ is wrong} \]

I'll explain this later.
Does data provide sufficient evidence to support an association between climate and tornado activity?

<table>
<thead>
<tr>
<th></th>
<th>El Nino</th>
<th>La Nina</th>
<th>Normal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td># of years</td>
<td>12</td>
<td>17</td>
<td>25</td>
<td>54</td>
</tr>
<tr>
<td>Proportion</td>
<td>(\frac{12}{54} = 0.22)</td>
<td>(\frac{17}{54} = 0.32)</td>
<td>(\frac{25}{54} = 0.46)</td>
<td>1</td>
</tr>
</tbody>
</table>

of days with violent tornadoes:
- \(n_1 = 14 \) in El Nino
- \(n_2 = 28 \) in La Nina
- \(n_3 = 44 \) in Normal

Proportion: \(\frac{14}{86} = 0.16 \) in El Nino, \(\frac{28}{86} = 0.33 \) in La Nina, \(\frac{44}{86} = 0.51 \) in Normal

Null Hypothesis (H₀): There is no association, i.e., \(\pi_1 = \pi_2 = \pi_3 = 0.46 \)

Alternative Hypothesis (H₁): At least one of these assignments is wrong.

If H₀ is True, how many tornadoes do you expect in each of the \(k^3 \) categories?

Expected Count:
- \(0.22 \times 86 = 18.9 \)
- \(0.32 \times 86 = 27.5 \)
- \(0.46 \times 86 = 39.6 \)

Observed Count:
- 14
- 28
- 44
\[
\frac{(\text{Exp.} - \text{obs})^2}{\text{Exp}} = \begin{array}{c}
(4.9)^2 & (-0.5)^2 & (-4.4)^2 \\
1.27 & 0.0009 & 0.49 \\
\end{array}
\]

\[
\sum_{i=1}^{3} \frac{(\text{exp.} - \text{obs})^2}{\text{exp.}} = 1.77
\]

If there were really no difference at all in the # of tomatoes between the 3 categories, then this would be near 0.

Q: So, is it far away from 0 to call it not 0?

Note: \(X^2\) is non-negative, unlike \(z, t\)

\[X^2\text{ has a chi-squared dist. with } df = k - 1 \quad (= 3 - 1 = 2)\]

The area under the chi-sq. dist. is in Table VII.

p-value = prob\(X^2 >= x^2_{\text{obs}}\) = prob\(X^2 >= 1.77\) > 0.1 \(\Rightarrow\) df = 3-1 = 2

Conclusion (at \(\alpha = 0.01\)): p-value > \(\alpha\)

In words: cannot reject \(H_0\) in favor of \(H_1\).

\((\hat{p}_1 = 0.22, \hat{p}_2 = 0.32, \hat{p}_3 = 0.46)\)

In English: The evidence from this data does not suggest that there is an association between climate and tomato activity.

For the chi-sq test, this sign is always > 1. I'll explain that, later!
Summary / Generalization

Now, let's generalize the above example to \(k \) categories:

Let \(\pi_i = \text{proportion of cases in category } i \):

- \(\pi_1 = \text{proportion of category 1} \)
- \(\pi_2 = \text{proportion of category 2} \)
- \(\pi_3 = \text{proportion of category 3} \)

Null params:

- \(\pi_{01} = 0.22 \)
- \(\pi_{02} = 0.32 \)
- \(\pi_{03} = 0.46 \)

If \(H_0 = \text{True} \), \(H_0: \pi_1 = \pi_{01}, \pi_2 = \pi_{02}, \ldots \)

Then in a sample of size \(n \), how many would we expect in category 1:

\[n \pi_{01} \]

- Category 1:
- Category 2:
- Category 3:

\[\sum n_i = n \]

But according to data, we observe this many:

\[\sum \begin{cases} n_1 \rightarrow 14 \\ n_2 \rightarrow 28 \\ n_3 \rightarrow 44 \end{cases} \]

Punch line:

Thus the theorem tells us that:

\[X_{\text{obs}}^2 = \sum \frac{(\text{exp} - \text{obs})^2}{\text{exp}} = \sum \frac{(n \pi_{0i} - n_i)^2}{n \pi_{0i}} \]

counts, not proportions!

has a chi-squared distribution with \(df = k-1 \).
A sample of 210 Bell computers has 56 defectives. Theory suggests that a third of all Bell computers should be defective. Does this data contradict the theory (at alpha=0.05)? Specifically,

a) Do a z-test.

b) Do a chi-squared test with k=2 categories. Hint: The pi's (and pi_0's) of the k categories must sum to 1.

c) Are the conclusions in a and b consistent?

Consider the data from an example in a past lecture where a survey of students in 390 yielded the following data:

- 17 students like Lab
- 48 students do not like Lab
- 15 students have no opinion.

Suppose I believed that the proportion of students in each of the 3 categories (like, no-like, no-opinion) was equal. Does this data contradict that belief? Let alpha = 0.05.