Last time we learned that the prediction we get from regression, i.e. \(\hat{y}(x) = \hat{\alpha} + \hat{\beta} x + \varepsilon \) (no \(\varepsilon \)!) has 2 interpretations:

1) The (conditional) mean of all \(y \), given \(x \).
2) The prediction of a single \(y \), given \(x \).

An estimate of the former requires a C.I. of the true (conditional) mean of \(y \), given \(x \).

The uncertainty in the latter is conveyed through a P.I. for the specific \(y \) value being predicted.

\[
\text{C.I.:} \quad \hat{y}(x) \pm t^* s_e \sqrt{\frac{1}{n} + \frac{(x-x)^2}{S_{xx}}} = \hat{y} \pm s^*_y
\]

2) Prediction Interval (P.I.) for a single \(y \).

Suppose \(y^* \) is Joe’s \(y \) value corresponding to his \(x \)-value, \(x^* \).

Theorem states that \(\hat{y}(x) - y^* \) has a normal distr. with params \(\mu = 0 \), \(\sigma^2 = \sigma^2 \) prediction error.

\[
\text{Prediction error} = \hat{y}(x) - y^* \leq \sigma^*_y
\]
\[\sigma_{\text{pred. err}}^2 = \text{Var}[\hat{y}(x)] + \text{Var}[\epsilon] \]

Estimate/approximate with \(\hat{\sigma}_\gamma^2 \) (given above)

\[\hat{\sigma}_\gamma^2 = \frac{\sigma_e^2}{\epsilon} \]

Think! The variance of all \(y \) values at a given \(x \) is \(\sigma_e^2 \).

Estimate/approximate with \(S_e^2 \).

\[S_{\text{pred. err}}^2 = \hat{\sigma}_\gamma^2 + \frac{S_e^2}{\epsilon} \]

above \(\text{SSE/(n-2)} \)

\[\text{prediction error} \]

\[z \rightarrow t \quad t = \frac{\hat{y}(x) - \gamma^*}{S_{\text{pred. err}}} \]

\(\sim t - \text{dist, df=}\ n-2 \)

P.I. for a single \(y \): \(\hat{y} \pm t^* S_{\text{pred. err}} = \hat{y} \pm t^* \sqrt{\hat{\sigma}_\gamma^2 + S_e^2} \)

Compare with C.I. for \(\gamma \) (the conditional mean): \(\hat{y} \pm t^* S_{\gamma} \)

Which one is bigger? P.I. makes sense?
Summary picture:

C.I. ← est. error ← $\hat{y} + s_y^* (x^*)$

P.I. ← pred. error ← $\hat{y} + s_y (x^*)$

Don't forget what these intervals mean:

2 interpretations for C.I.:

1) We are 95% confident that the true (conditional) mean of y, given x, is in a computed C.I.

2) About 95% of random C.I.s will cover the true conditional mean of y, given x.

For P.I.: only 1 interpretation (for now)

1) About 95% of these P.I.s will cover an individual's y, given his/her x.

1') After we are more comfortable with these interpretations we will allow ourselves to also say things like "plausible values of observed y, given x, are in the observed P.I."

(See example, below)
In summary:

\[\hat{\text{est. error}} = \hat{y} - y(x) \]

\[\sigma_{\text{est. error}}^2 = \sigma_y^2 + \sigma_{y(x)}^2 \]

Recall that \(\sigma_y^2 \) means the variance of \(y \) under resampling. \(y(x) \) is the fit to the \(y \) for a given \(x \), and so, its variance under resampling is just \(\sigma_y^2 \).

\[\sigma_{\text{pred. error}}^2 = \sigma_y^2 + \sigma_e^2 \]

\[S_{\text{est. error}}^2 = S_y^2 \]

\[S_{\text{pred. error}}^2 = S_y^2 + S_e^2 \]

C.I.: \(\hat{y} \pm t^* S_e \sqrt{\frac{1 + (x - x)^2}{n - S_{xx}^{-1}}} \)

P.I.: \(\hat{y} \pm t^* \sqrt{\frac{S_y^2 + S_e^2}{n}} \)

\[S_y^2 \xrightarrow{\text{n} \to \infty} 0 \] \(\xrightarrow{n \to \infty} \) But P.I. does not!

One more comparison: How do C.I. & P.I. vary as \(n \to \infty \)?
In the example from prev. lecture, we found the C.I.:

\[
\hat{y} \pm t^{*} \frac{\hat{\sigma}_{e}}{\sqrt{n}} = \hat{y} \pm t^{*} \frac{S_{e}}{\sqrt{n}} \sqrt{\frac{1}{n} + \frac{(x-x)^{2}}{S_{xx}}}
\]

\[
= 3.445 \pm 2.365 \left(0.0644\right) \sqrt{\frac{1}{9} + \frac{(1.5 - 12.6)^{2}}{0.6}}
\]
\[
\text{df} = 9 - 2 = 7
\]
\[
0.02302 \approx S_{\text{est. err.}} = S_{\hat{\sigma}_{e}}
\]

\[
\hat{y} \pm t^{*} S_{\hat{\sigma}_{e}} = 3.445 \pm 0.0544
\]

\[
(3.39, 3.50)
\]

\[
\frac{\hat{y} \pm t^{*} S_{\hat{\sigma}_{e}}}{\text{for a single case}}
\]

\[
\text{predict oxygen diffusivity when temperature is 1.5 K} \text{ in a way that conveys info about reliability & precision.}
\]

This is asking for a prediction interval:

\[
\hat{y} \pm t^{*} \sqrt{S_{\hat{\sigma}_{e}}^{2} + S_{\hat{\sigma}_{e}}^{2}}
\]

\[
= 3.445 \pm 2.365 \sqrt{(0.02302)^{2} + (0.0644)^{2}}
\]

\[
= 3.445 \pm 0.1617 = (3.28, 3.61)
\]

1) 95% of such PI's will cover single observations of \(y \) at x = 1.5

2) At 95% prediction level, plausible values for a single observation on \(y \), at \(x = 1.5 \), are between 3.28 and 3.61.
We have been talking about inference on β (and α), the conditional mean of y, given x, and a single y_i at x.

What about multiple regression?

In going from $y = \alpha + \beta x$ \hline (1+1 params) to $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k$ \hline \hline ($k+1$ params) things generalize in a straightforward way.

Basically df changes: $n-2 \Rightarrow n-(k+1)$ \hline $\Rightarrow \# of \beta$'s.

E.g. σ^2 is estimated with $\frac{SSE}{[n-(k+1)]} = s_e^2$.

The df for t, and p-value, changes too.

But don’t forget that the issues of collinearity and interaction come back again.

But the presence of multiple β's presents one more test we can do:

$H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$ \hline \hline \leftrightarrow Test of “model utility”. \hline \hline makes sense! In $y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k$ if all $\beta_i = 0$, then none of the predictors are good. \hline \hline i.e. bad model!