You may use the following results without derivation:

- If $\theta \sim \text{beta}(a, b)$ then $E[\theta^c(1 - \theta)^d] = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a + c)\Gamma(b + d)}{\Gamma(a + b + c + d)}$.
- A χ^2_n distribution is a gamma($n/2, 1/2$) distribution.
- If $X \sim \text{gamma}(a, b)$ then $E[X^r] = \frac{\Gamma(a + r)}{\Gamma(a)} \frac{1}{b^r}$.

1. Let $X_1, \ldots, X_n \sim \text{i.i.d. } P_\theta \in \mathcal{P} = \{\text{uniform}(\theta - 1/2, \theta + 1/2), \theta \in \mathbb{R}\}$. Consider estimation of θ under squared error loss.

 (a) Show that this estimation problem is invariant under the group $\mathcal{G} = \{g : \mathbf{x} \rightarrow \mathbf{x} + a\mathbf{1}, a \in \mathbb{R}\}$, and find the induced groups on the parameter space and the decision space.

 (b) Find the UMREE of θ, stating any results from the notes or text you are using.

2. (a) Let $X \sim \text{binomial}(n, \theta)$. Find the Bayes estimator of θ under the uniform prior and the loss $L(\theta, d) = (d - \theta)^2/[\theta(1 - \theta)]$. Find the non-Bayes risk function of this Bayes estimator under this loss.

 (b) Show that $\bar{X} = X/n$ is the minimax estimator of θ under this loss. State any theorems you use to obtain the result.

 (c) Suppose δ is minimax for a quantity $\theta = \theta(P)$ for $P \in \mathcal{P}_0$. Find a simple condition on δ that makes δ minimax for a larger family \mathcal{P}_1 where $\mathcal{P}_0 \subset \mathcal{P}_1$, and prove your result.

 (d) Let $X_k \sim \text{binomial}(n, \theta_k)$, $k = 1, \ldots, K$, with X_1, \ldots, X_K being independent. Find the minimax estimator of $\bar{\theta} = \sum \theta_k/K$ under the loss $L(\bar{\theta}, d) = (d - \bar{\theta})^2/[\bar{\theta}(1 - \bar{\theta})]$. State any theorems you use to obtain the result.

3. Consider estimation of θ from $\mathbf{X} \sim N_p(\theta, \mathbf{I})$ under sum-of-squared errors loss.
(a) Under the prior $\theta \sim N_p(0, \tau^2 I)$, obtain the Bayes estimator δ_π and its Bayes risk $R(\pi, \delta_\pi)$.

(b) Show that the posterior risk of any estimator δ of θ can be expressed in terms of the posterior variance of θ and the posterior bias of δ (the difference between δ and $E[\theta|X]$).

(c) Obtain the marginal (prior predictive) distribution of X, and from this and (b) calculate the Bayes risk of $\delta_{JS} = (1 - (p-2)/(X \cdot X))X$.

(d) Obtain a lower and upper bound on $R(\pi, \delta_{JS})$ based on $R(\pi, \delta_\pi)$ that is valid for all values of τ^2. Discuss the implications of this result.

4. Suppose an unknown parameter θ is either $1/2$ or $1/3$. Our goal is to estimate θ with zero-one loss using the information from a single binary(θ) random variable X. Consider the following four non-randomized estimators:

$\delta_1(X) = 1/3$
$\delta_2(X) = 1/(3 - X)$
$\delta_3(X) = 1/2$
$\delta_4(X) = 1/(2 + X)$

(a) Find the risk functions of each estimator (there are only two possible values of θ).

(b) For each estimator, determine whether or not it is
 i. admissible among non-randomized estimators;
 ii. minimax among non-randomized estimators.

(c) Calculate the Bayes risk of each estimator as a function of the prior $\pi = \Pr(\theta = 1/2)$. For what values of π is each estimator Bayes?

(d) Note that a randomized estimator for this problem can be expressed as

$$\delta(X) = \begin{cases}
1/2 & \text{w.p } a(X) \\
1/3 & \text{w.p } 1 - a(X).
\end{cases}$$

Calculate the risk function of such estimators as a function of θ, $a_0 = a(0)$ and $a_1 = a(1)$, and determine if one of $\delta_1, \ldots, \delta_4$ is still minimax among all estimators (randomized and non-randomized).