Latent Factor Models for Relational Data

Peter Hoff
Statistics, Biostatistics and
Center for Statistics and the Social Sciences
University of Washington
Outline

Part 1: Multiplicative factor models for network data
 Relational data
 Eigenvalue decomposition model
 Example: Adolescent social network
 Singular value decomposition model
 Example: International conflicts

Part 2: Extension to multiway data
 Multiway data
 Multiway latent factor models
 Example: Cold war cooperation and conflict

Summary and future work
Relational data

Relational data: consist of

- a set of units or nodes A, and
- a set of measurements $Y \equiv \{y_{i,j}\}$ specific to pairs of nodes $(i,j) \in A \times A$.

Examples:

International relations
- $A =$countries, $y_{i,j} =$ indicator of a dispute initiated by i with target j

Needle-sharing network
- $A =$IV drug users, $y_{i,j} =$ needle-sharing activity between i and j

Protein-protein interactions
- $A =$proteins, $y_{i,j} =$ the interaction between i and j

Document analysis
- $A_1 =$words, $A_2 =$documents, $y_{i,j} =$ wordcount of i in document j
Adolescent health social network

Data on 82 12th graders from a single high school:

54 boys, 28 girls

\[\hat{\Pr}(y_{i,j} = 1|\text{same sex}) = 0.077 \]

\[\hat{\Pr}(y_{i,j} = 1|\text{opposite sex}) = 0.056 \]
Inferential goals in the regression framework

\[y_{i,j} \text{ measures } i \rightarrow j, \quad x_{i,j} \text{ is a vector of explanatory variables.} \]

\[
Y = \begin{pmatrix}
 y_{1,1} & y_{1,2} & y_{1,3} & \text{NA} & y_{1,5} & \cdots \\
 y_{2,1} & y_{2,2} & y_{2,3} & y_{2,4} & y_{2,5} & \cdots \\
 y_{3,1} & \text{NA} & y_{3,3} & y_{3,4} & \text{NA} & \cdots \\
 y_{4,1} & y_{4,2} & y_{4,3} & y_{4,4} & y_{4,5} & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{pmatrix}
\]

\[
X = \begin{pmatrix}
 x_{1,1} & x_{1,2} & x_{1,3} & x_{1,4} & x_{1,5} & \cdots \\
 x_{2,1} & x_{2,2} & x_{2,3} & x_{2,4} & x_{2,5} & \cdots \\
 x_{3,1} & x_{3,2} & x_{3,3} & x_{3,4} & x_{3,5} & \cdots \\
 x_{4,1} & x_{4,2} & x_{4,3} & x_{4,4} & x_{4,5} & \cdots \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{pmatrix}
\]

Consider a basic (generalized) linear model

\[y_{i,j} \sim \beta' x_{i,j} + e_{i,j} \]

A model can provide

- a measure of the association between \(X \) and \(Y \): \(\hat{\beta}, \text{se}(\hat{\beta}) \)
- imputations of missing observations: \(p(y_{1,4}|Y, X) \)
- a probabilistic description of network features: \(g(\tilde{Y}), \tilde{Y} \sim p(\tilde{Y}|Y, X) \)
Model fit

glm(formula = y ~ x, family = binomial(link = "logit"))

Coefficients:

 Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.83325 0.11234 -25.24 <2e-16 ***
x 0.34712 0.14278 2.434 0.0151 *

This result says that a model with preferential association is a better
description of the data than an i.i.d. binary model.
Nodal heterogeneity and independence assumptions
Model lack of fit

Neither of these models do well in terms of representing other features of the data - for example, transitivity:

\[t(\mathbf{Y}) = \sum_{i<j<k} y_{i,j} y_{j,k} y_{k,i} \]
Latent variable models

Deviations from ordinary regression models can be represented as

$$y_{i,j} \sim \beta' x_{i,j} + e_{i,j}$$

A simple “latent variable” model might include additive node effects:

$$e_{i,j} = u_i + u_j + \epsilon_{i,j} \quad \Rightarrow \quad y_{i,j} \sim \beta' x_{i,j} + u_i + u_j + \epsilon_{i,j}$$

$$\{u_1, \ldots, u_n\}$$ represent across-node heterogeneity that is additive on the scale of the regressors. Inclusion of these effects in the model can dramatically improve

- within-sample model fit (measured by R^2, likelihood ratio, BIC, etc.);
- out-of-sample predictive performance (measured by cross-validation).

But this model only captures heterogeneity of outdegree/indegree, and can’t represent more complicated structure, such as clustering, transitivity, etc.
Fit of additive effects model

- Log-odds ratio: -1.0, -0.5, 0.0, 0.5, 1.0
- Transitive triples: 0, 100, 300, 500
Latent variable models via exchangeability

\(\mathbf{X} \) represents known information about the nodes
\(\mathbf{E} \) represents deviations from the regression model
In this case we might be willing to use a model for \(\mathbf{E} \) in which

\[
\{e_{i,j}\} \overset{d}{=} \{e_{gigj}\}
\]

for all permutations \(g \). This is a type of exchangeability for arrays, sometimes called \emph{weak exchangeability}.

\textbf{Theorem (Aldous, Hoover):} Let \(\{e_{i,j}\} \) be a weakly exchangeable array. Then \(\{e_{i,j}\} \overset{d}{=} \{e_{i,j}^*\} \), where

\[
e_{i,j}^* = f(u_i, u_j, \epsilon_{i,j})
\]

and \(\{u_i\}, \{\epsilon_{i,j}\} \) are all independent random variables.
The eigenvalue decomposition model

\[\mathbf{E} = \mathbf{M} + \mathbf{E} \]

\(\mathbf{M} \) represents “systematic” patterns and \(\mathbf{E} \) represents “noise”. Every symmetric \(\mathbf{M} \) has a representation of the form \(\mathbf{M} = \mathbf{U} \Lambda \mathbf{U}' \) where

- \(\mathbf{U} \) is an \(n \times n \) matrix with orthonormal columns
- \(\Lambda \) is an \(n \times n \) diagonal matrix, with elements \(\{\lambda_1, \ldots, \lambda_n\} \)

Many data analysis procedures for symmetric matrix-valued data \(\mathbf{Y} \) are related to this decomposition. Given a model of the form

\[\mathbf{Y} = \mathbf{M} + \mathbf{E} \]

where \(\mathbf{E} \) is independent noise, the ED provides

Interpretation:
\[y_{i,j} = \mathbf{u}_i' \Lambda \mathbf{u}_j + \epsilon_{i,j}, \quad \mathbf{u}_i \text{ and } \mathbf{u}_j \text{ are the } i\text{th, } j\text{th rows of } \mathbf{U} \]

Estimation:
\[\hat{\mathbf{M}}_R = \hat{\mathbf{U}}_{[1:R]} \hat{\Lambda}_{[1:R,1:R]} \hat{\mathbf{U}}'_{[1:R]} \]

if \(\mathbf{M} \) is assumed to be of rank \(R \).
Generalized bilinear regression

\[y_{i,j} \sim \beta' x_{i,j} + u_i' \Lambda u_j + \epsilon_{i,j} \]

Interpretation:
Think of \(\{u_1, \ldots, u_n\} \) as vectors of latent nodal attributes:

\[u_i' \Lambda u_j = \sum_{r=1}^{R} \lambda_k u_{i,k} u_{j,k} \]

In general, a latent variable model relating \(X \) to \(Y \) is

\[g(y_{i,j}) = \beta' x_{i,j} + u_i' \Lambda v_j + \epsilon_{i,j} \]

and the parameters can be estimated using a rank-likelihood or multinomial probit. Alternatively, parametric models include

- If \(y_{i,j} \) is binary, \(\log \text{odds} (y_{i,j} = 1) = \beta' x_{i,j} + u_i' \Lambda u_j + \epsilon_{i,j} \)
- If \(y_{i,j} \) is count data, \(\log \mathbb{E}[y_{i,j}] = \beta' x_{i,j} + u_i' \Lambda u_j + \epsilon_{i,j} \)
- If \(y_{i,j} \) is continuous, \(\mathbb{E}[y_{i,j}] = \beta' x_{i,j} + u_i' \Lambda u_j + \epsilon_{i,j} \)

Estimation: Given \(\Lambda \), the predictor is linear in \(U \). This bilinear structure can be exploited (EM, Gibbs sampling).
Eigenmodel fit

Parameters this model can be fit with the eigenmodel package in R:

eigenmodel_mcmc(Y,X,R=3)

The latent factors are able to represent the network transitivity.
Underlying structure
Missing variables
Missing variables

The eigenmodel, without having explicit race information, captures a large degree of the racial homophily in friendship:
Multiway data

Data on pairs is sometimes called two-way data.

More generally, data on triples, quadruples, etc. is called multi-way data.

\(A_1, A_2, \ldots, A_p \) represent classes of objects.

\(y_{i_1,i_2,\ldots,i_p} \) is the measurement specific to \(i_1 \in A_1, \ldots, i_p \in A_p \).

Examples:

International relations

\(A_1 = A_2 = \) countries, \(A_3 = \) time,

\(y_{i,j,t} = \) indicator of a dispute between \(i \) and \(j \) in year \(t \).

Social networks

\(A_1 = A_2 = \) individuals, \(A_3 = \) information sources,

\(y_{i,j,k} = \) source \(k \)'s report of the relationship between \(i \) and \(j \).

Document analysis

\(A_1 = A_2 = \) words, \(A_3 = \) documents,

\(y_{i,j,k} = \) co-occurrence of words \(i \) and \(j \) in document \(k \).
Factor models for multiway data

Recall the decomposition of a two-way array of rank R:

$$m_{i,j} = u_i^\prime \Lambda u_j = \sum_{r=1}^{R} u_{i,r} u_{j,r} \lambda_r$$

Now generalize to a three-way array:

$$m_{i,j,k} = \sum_{r=1}^{R} u_{i,r} u_{j,r} w_{k,r} \lambda_r$$

- $\{u_1, \ldots, u_n\}$ represents variation among the nodes;
- $\{w_1, \ldots, w_m\}$ represents variation across the networks.

Consider the kth “slab” of M, which is an $n \times n$ matrix:

$$m_{i,j,k} = \sum_{r=1}^{R} u_{i,r} u_{j,r} w_{k,r} \lambda_r$$

$$= \sum_{r=1}^{R} u_{i,r} u_{j,r} \lambda_{k,r} = u_i^\prime \Lambda_k u_j \quad \text{where } \lambda_{k,r} \text{ replaces } w_{k,r} \lambda_k$$
Cold war cooperation and conflict data
Cold war cooperation and conflict data
Summary:

- Latent factor models are a natural way to represent patterns in relational or array-structured data.
- The latent factor structure can be incorporated into a variety of model forms.
- Model-based methods
 - give parameter estimates;
 - accommodate missing data;
 - provide predictions;
 - are easy to extend.

Future Directions:

- Dynamic network inference
- Generalization to multi-level models
The SVD model for asymmetric data

\[E = M + \mathcal{E} \]

\(M \) represents “systematic” patterns and \(\mathcal{E} \) represents “noise”. Every \(M \) has a representation of the form \(M = UDV' \) where, in the case \(m \geq n \),

- \(U \) is an \(m \times n \) matrix with orthonormal columns;
- \(V \) is an \(n \times n \) matrix with orthonormal columns;
- \(D \) is an \(n \times n \) diagonal matrix, with diagonal elements \(\{d_1, \ldots, d_n\} \) typically taken to be a decreasing sequence of non-negative numbers.

Recall,

- The squared elements of the diagonal of \(D \) are the eigenvalues of \(M'M \) and the columns of \(V \) are the corresponding eigenvectors.
- The matrix \(U \) can be obtained from the first \(n \) eigenvectors of \(MM' \). The number of non-zero elements of \(D \) is the rank of \(M \).
- Writing the row vectors as \(\{u_1, \ldots, u_m\}, \{v_1, \ldots, v_n\} \), \(m_{i,j} = u_i'Dv_j \).
Data analysis with the singular value decomposition

Many data analysis procedures for matrix-valued data Y are related to the SVD. Given a model of the form

$$Y = M + \mathcal{E}$$

where \mathcal{E} is independent noise, the SVD provides

Interpretation: $y_{i,j} = u'_i D v_j + \epsilon_{i,j}$, u_i and v_j are the ith, jth rows of U, V

Estimation: $\hat{M}_R = \hat{U}_{[1:R]} \hat{D}_{[1:R,1:R]} \hat{V}'_{[1:R]}$ if M is assumed to be of rank R.

Applications:
- biplots (Gabriel 1971, Gower and Hand 1996)
- reduced-rank interaction models (Gabriel 1978, 1998)
- analysis of relational data (Harshman et al., 1982)
- Factor analysis, image processing, data reduction,

Notes:
- How to select R? Given R, is \hat{M}_R a good estimator? ($E[Y'Y] = M'M + m\sigma^2 I$)
11 years of international relations data (Mike Ward and Xun Cao)

- $y_{i,j} =$ indicator of a militarized disputes initiated by i with target j;
- $x_{i,j}$ an 8-dimensional covariate vector containing an intercept and
 1. population initiator
 2. population target
 3. polity score initiator
 4. polity score target
 5. polity score initiator \times polity score target
 6. log distance
 7. number of shared intergovernmental organizations

Model: $y_{i,j}$ are independent binary random variables with log-odds

$$\log \text{odds}(y_{i,j} = 1) = \beta' x_{i,j} + u'_i D_v j + \epsilon_{i,j}$$
International conflict network: parameter estimates

log distance
polity initiator
intergov org
polity target
polity interaction
log pop target
log pop initiator

regression coefficient

-3 -2 -1 0 1
International conflict network: description of latent variation
International conflict network: prediction experiment

- K=0
- K=1
- K=2
- K=3
Factor models for multiway data

Recall the decomposition of a two-way array of rank R:

$$m_{i,j} = u_i^r D v_j = \sum_{r=1}^{R} u_{i,r} v_{j,r} d_r$$

Now generalize to a three-way array:

$$m_{i,j,k} = \sum_{r=1}^{R} u_{i,r} v_{j,r} w_{k,r} d_r$$

- $\{u_1, \ldots, u_{n_1}\}$ represents variation along the 1st dimension
- $\{v_1, \ldots, v_{n_2}\}$ represents variation along the 2nd dimension
- $\{w_1, \ldots, w_{n_3}\}$ represents variation along the 3rd dimension

Consider the kth “slab” of M, which is an $n_1 \times n_2$ matrix:

$$m_{i,j,k} = \sum_{r=1}^{R} u_{i,r} v_{j,r} w_{k,r} d_r$$

$$= \sum_{r=1}^{R} u_{i,r} v_{j,r} d_{k,r} = u_i^r D_k v_j \quad \text{where } d_{k,r} = w_{k,r} d_k$$