What is the effect size?

Example: Experimental data on degree days until 125 of 150 Chinook salmon fry volitionally emerge

```r
fivec <- c(1156.2, 1145.8, 1156.2, 1176.6, 1156.2, 1135.6)
tenc  <- c(1153.8, 1132.6, 1146.7, 1203.7, 1160.8, 1146.7, 1153.8)
dayseas <- c(1167.5, 1167.5, 1133.3, 1151.4, 1121.2, 1142.9, 1121.2, 1121.2)
doubledaily <- c(1184.8, 1193.2, 1176.3, 1201.5, 1159.4, 1167.8, 1150.8, 1150.8)
flipflop <- c(1175.3, 1182.3, 1182.3, 1222.0, 1168.1, NA, 1144.3, 1125.3)
```

Calculate the mean of each and the difference

```r
mean5 <- mean(fivec)
mean10 <- mean(tenc)
dif.mean <- mean5 - mean10
```

Traditional effect size

Need standard deviation (shared)

```r
var.shared <- var(c(mean5, mean10))
sd.shared <- sqrt(var.shared)
trad.effect.size <- dif.mean / sd.shared
```

Bootstrap a confidence interval!

Calculate difference in the means as above

Create a new data set for each treatment with properties of the old data set

```r
boot.samp5 <- sample(fivec, 8, replace=TRUE)
boot.samp10 <- sample(tenc, 8, replace=TRUE)
```

Calculate a bootstrapped difference in the means

```r
boot.dif <- mean(boot.samp5) - mean(boot.samp10)
```

Repeat 1000 times

```r
boot.dif <- rep(0, 1000)
for (b in 1:1000){
    boot.samp5 <- sample(fivec, 8, replace=TRUE)
    boot.samp10 <- sample(tenc, 8, replace=TRUE)
    boot.dif[b] <- mean(boot.samp5) - mean(boot.samp10)
}
hist(boot.dif)
abline(v=dif.mean, lty=2, lwd=3)
```

Find the upper and lower bounds of 95% of the data

95% confidence interval

```r
sort(boot.dif)[25]
sort(boot.dif)[975]
```

sort just put all the data in order - look at it

```r
sort(boot.dif)
```

[25] pulls out the 25th one (so 24 values are lower - 2.5% of the data)
#[975] pulls out the 975th one (only 25 values are higher - 2.5% of the data)
std.err.diff=sqrt(var((boot.dif)))
hist(boot.dif)
abline(v=sort(boot.dif)[25], lty=2, lwd=2)
abline(v=sort(boot.dif)[975], lty=2, lwd=2)
abline(v=dif.mean, lty=1, lwd=5)

parametric.bounds=1.96*std.err.diff

plot one effect - two ways
par(mfrow=c(1,1), lwd=2)
symbols (1, dif.mean, circles=parametric.bounds, ylim=c(-50,50), xlim=c(-50,50), inches=FALSE)
abline(h=0, lty=2)
#note some folks like the size to be inversely proportional to the standard error

install package - gplots
library(gplots)
plotCI(dif.mean, ui=sort(boot.dif)[975], li = sort(boot.dif)[25], err="y", barcol="black", ylim=c(-30, 30))
abline(h=0, lty=4, col="Grey40")

####EXERCISE
##compare either stable at 5C or stable at 10C to one of the variable treatment (dayseas, doubledaily, flipflop)
##calculate the difference in means
##bootstrap a 95% confidence interval around that difference
##plot either (a) just the new effect size or (b) both effects on one graph
##Which effect is estimated to be the largest?
##Which effects might not exist at all?
##Is the largest effect size always the most important?

####GoingBeyond
##Simulate some data from a weird distribution
##Simulate some more data from another or similar distribution (more fun if the means are different)
##Simulate the difference between the means of a sample from each distribution of size 40 (as in the CLT but for the difference between two means)
##Calculate the standard error for this random variable - the difference in the two means
##Take one sample of size 40 from each population and pretend those are the results of your experiment
##Calculate a bootstrapped confidence interval for the difference in the means, the effect size
##How similar is the true distribution of the difference in the two means to the bootstrapped CI from your one sample?
##Why might these distributions be different? How similar should they be?

Extra4Experts
Run the bootstrap experiment 1000 times to see how different your estimates of the variance around that parameter might be.

Extra4Experts
##The parametric bootstrap involves estimating the parameters of a distribution from a sample and then using those estimated parameters to draw bootstrap simulations from the distribution
##Try creating a parametric bootstrap estimate of these two effect sizes and compare.