Seminar Details

Seminar Details


Apr 11

4:00 pm

Interpretable Prediction Models for Network-Linked Data

Liza Levina

Faculty host Mathias Drton

University of Michigan - Statistics

Prediction problems typically assume the training data are independent samples, but in many modern applications samples come from individuals connected by a network. For example, in adolescent health studies of risk-taking behaviors, information on the subjects’ social networks is often available and plays an important role through network cohesion, the empirically observed phenomenon of friends behaving similarly. Taking cohesion into account should allow us to improve prediction. Here we propose a regression-based framework with a network penalty on individual node effects to encourage similarity between predictions for linked nodes, and show that it outperforms traditional models both theoretically and empirically when network cohesion is present. The framework is easily extended to other models, such as the generalized linear model and Cox’s proportional hazard model. Applications to predicting teenagers' behavior based on both demographic covariates and their friendship networks from the AddHealth data are discussed in detail.