STAT 311 WINTER 2015

- Instructor: Professor Elizabeth Thompson
- TA's: Nilanjana Laha: Sections AA, AB
 Yicheng Li: Sections AC, AD
 Grainne Ne Shi McKnight: Sections AE, AF
- The same team as Fall 2014
- The web page:
 https://canvas.uw.edu/courses/950686/

See the Canvas web page for
- lecture notes/schedule, office hours, study center
- homework info, lab info (do you have a laptop?)
- book info, exams info, grading info, and more
- Add codes: sign up for add code at end of class. – Please give your UW NetId – NOT student number.
The text book and Aplia

• The text book is
 Utts and Heckard: Mind on Statistics, 5th edition
• We will cover Chapters 1-16: 1 or 2 per week.
• The course moves fast: and we have only 28 lecture sessions as compared to 31 in Fall.
• Two options:
 (1) Bookstore – hardcopy text+ Aplia web access
 (more expensive; and make sure the copy is good)
 (2) With Aplia access electronic copy:
 (less expensive and quite convenient– if hate reading online can download and print chapters.)
• Homeworks will be through Aplia online system – see Canvas page for details on how to register.
• Please use your UW name on Aplia
Acknowledgements

• I did teach this class in Fall but –
• Professors Eli Gurarie and Martina Morris have regularly taught STAT 311 in recent quarters, and developed many lab and lecture materials.
 • Professor Martina Morris has used the Aplia system for STAT 311:
 • The Aplia assignments evolve, but remain very close to those of Martina from Spring 2014.
 • Many figures etc. are taken from Martina’s slides.
 • Other figures are taken from the slides and other instructor materials provided by the Aplia provider:
 Cengage Learning: www.cengage.com
Two schedules: follow both!

1. Canvas schedule of Lecture and quiz sections:
 - Module 1 on Canvas contains much info, including
 - PDF schedule of lecture and lab topics
 - Will be updated as often as possible.
 - Also, note Midterm date Friday Feb 6
 - Tied to the Canvas course modules which are organized by week (Mon to Sun as per Aplia)
 - Always look ahead to the next week– especially for labs
 - Full Lecture note slides will be uploaded AFTER each lecture-
 - An outline version will be available before class.
 - Remind me if the final version does not appear.
Two schedules – Aplia Schedule

2. Aplia homework and lab assignments schedule:
 • Two types of Aplia homework assignments:
 • Practice: will show answers, can do any number of tries.
 • Graded: generally basis for homework grade, but may be “excluded” from course score
 (e.g. Math practice assignment due Friday 11:00 p.m.)
 • Graded Aplia problems:
 • No “grade-it-now” multiple try problems in scored graded hwks.
 • “Grade at deadline”: 1 try only --but can be edited up to the deadline – what ever is there at deadline is graded.
 • Most (maybe all) homeworks are same for all students.
 • Labs will also be submitted via Aplia. (all 1 try only)
 • Until Midterm: Homeworks due Monday night, and labs Tuesday night -- look ahead every week!
 • Homewors/labs available at latest 7 days ahead. (ASK if not)
 • Due time: 11:00 p.m. Pacific time – if Aplia apparently tells you otherwise CHECK your Aplia time zone, and/or ASK.
View forward for the week

• Today, Monday: Overview and an example.
 • Check out the canvas site; register for Aplia;
 • get add codes and register for class if you can.
• Tomorrow, Tuesday sections:
 • Go to Quiz section – even if not yet registered
 • Get help with Aplia and R-studio– take your laptop!!
• Wednesday – Graphical summaries of data (U/H 2.1-4)
• Thursday-- Aplia and Rstudio practice and more practice.
• Friday: “Graded” (but “excluded”)) Math prep assignment due
• Friday -- Numerical data summaries (U/H 2.5-7) (Hwk 1)
• Monday 11:00 p.m.: first actually graded homework is due
• Tuesday -- quiz section -- more R towards lab 1
• Tuesday 11:00 p.m.: Lab 1 is due.
Getting help: it is a heavy class

• Your instructor and TAs are there for you
 • – but you also have to do your part.
• Check the web sites, come to class, go to quiz sections
 • Use the class discussion board
• Office hours
 • TA Office hours will be posted asap
 • Mine are posted, but may need to change some weeks. Tomorrow, Tues, 1-2pm in C-317 PDLFD
• Statistics Tutoring & Study Center (STSC)– FREE HELP
 • Basement of Communications (B-023, CMU)
 • Your TA’s and I will do (some) office hours there
 • Get help from your peers– study together.
 • Get help from tutors – 10am-5pm, 7-9pm, Mon-Thurs (?)
What is Statistics?

- Quantitative facts, numerical descriptions (data)
- Set of tools for the collection and analysis of data
- --- to assess evidence in the face of variation and uncertainty. (NOT true/false Math proofs.)
- --- so we can make decisions or draw conclusions.

- People (even here in JHN 102) vary in
 - height, gender, blood type..... Easy to measure
 - Income/job, math/music/athletic capabilities...OK
 - Opinions, beliefs, approach to life, Hard

Statistics uses terms like “error”, “deviation”,....

VARIATION is not ERROR
Where are statistical data?

- News reports; *Crime* statistics, *Traffic* statistics
- *Weather* reports; Record highs and lows; precipitation.
- *School records*, grades, course evaluations
- *Consumer reports*, *Election polls*
- *Environmental* standards, air pollution, forest diversity, salmon catch, endangered species
- *Medical* and *dental* records, diagnostic procedures.
- *Stock market*, business plans, marketing surveys
- --- and many more

- Note the news *EVENT* is not a statistical study, — although the event record may become part of one.
What is “doing Statistics”?

The course will cover:

• **Describing data** (Weeks 1-3):

 types of data: **discrete counts**; **continuous variables**

 graphical and numerical summaries

• **Principles of study designs for collecting data** (Weeks 4-5)

• **Modeling data with probabilities** (Weeks 6-7):

 Random variables. Sampling distributions

• **Statistical Inference** (Weeks 8-10):

 Confidence intervals and Hypothesis testing, for **discrete count data** (how many?) and **continuous data** variables

 (height, income, blood pressure....?)
Some key words & concepts

• Populations and samples
 • Observational studies and experiments
 • Cases: the unit of measurement
 • Variables: what we measure on the cases
 • Distributions: the patterns of variation for the measured variables in the population/sample.

• Parameters and Statistics
 • Description: summary statistics about samples
 • Estimation: from the statistic to the parameter
 • Inference: from the sample to the population

• Explanatory and response variables
 • Causation and association
Workers losing days to ‘flu

• What proportion of workers in Seattle will lose work-days to ‘flu next winter?
• Question: What proportion of workers in Seattle lost work-days to ‘flu last winter?

• Define the population (size N)
 ?? Seattle
 ?? Workers (full/part time?)
• Decide how to sample
 ?? representative sample
• Take a sample (size n)
 These workers are the cases or units of observation
• Measure a variable on each case: ask the question:
 Measurement (data) is YES/NO.
• Form a summary measurement: proportion in sample who lost days to flu last winter.
Parameters and Statistics

- **Population parameter:** the unknown proportion of Seattle workers who lost days to flu last winter.
- **Sample statistic:** the observed proportion in the sample who lost days to flu last winter.

- **Estimation:** assuming the sample is representative (!!), we can estimate the parameter by the statistic.

- AFTER next winter we can repeat the study.
- **Statistical hypothesis:** the population proportion is the same in the two years.
 - Test by comparing the sample proportions for last/next year.
- **How large a sample (n)?**
 This is in U/H Chapter 1, but we defer it for now.
Do flu-shots reduce workdays lost?

- **An Observational Study:**
 - Ask the (sample) workers who lost workdays whether they had a flu shot. **Useful information? Why/Why NOT?**
 - Ask all the (sample) workers whether they had a flu shot. **Why** is this a better design? **Case-control comparison.**
- **Statistical question:** Is the proportion of workers who lost work-days to flu the same among those who did/did not get flu shots?
- **This is a question statistics can answer.**
- **Suppose** we find a difference (in expected direction?):
 - Is it statistically significant?
 - If yes, can we conclude flu shots **cause** the reduction?
- Generally **NO:** there could be **confounding factors:** age, types of employment, economic/health-care status.
Do flu-shots reduce workdays lost?

• A Controlled Experiment:

• For next year’s study: Suppose we could randomly assign workers to get a flu shot or not?

• Finding (for next year) a statistically significant flu-shot effect:
 • Could we conclude flu shots cause the reduction?
 • Effect of belief in flu shot protection, if have/not shot?
 • Can we make the study “double blind”? -- Placebo?

• If we randomize and control the experiment, then maybe can infer cause, but ….

• Also, is the flu-shot effect large enough to be of practical importance? -- there may be personal costs/risks to flu shots.
Two kinds of Study designs

• Controlled Experiments
 • Investigator controls which subjects get which treatment
 • Intentional manipulation of subjects.
 • Apply a treatment, and measure data outcomes.

• Observational studies
 • Investigator does not control assignment of factors of interest to subjects.
 • Subjects are a sample from a population.
 • Data are measurements of variables of interest on subjects.
Explanatory and Response Variables

• Many statistical questions about the relationship between two variables.
 Did you get flu-shot? Did you lose days to flu?

• We (often) identify one as the explanatory variable and the other as the response variable.
 (In many cases, no good reason to choose which.)

• General idea: the value of the explanatory variable for an individual is thought to partially explain the value of the response variable for that case.
 • Having flu-shot reduces chance of losing days to flu?
 • But association does not show causation
 • in an observational study there are confounding factors (age, types of employment, economic/health-care status, …)
 • in a designed experiment, maybe if well-designed, but..