Bayesian Analysis of a Poisson Process with a Change-Point

A. E. Raftery; V. E. Akman

Stable URL:
http://links.jstor.org/sici?sici=0006-3444%28198604%2973%3A1%3C85%3AABAOAPP%3E2.0.CO%3B2-Y

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Biometrika is published by Biometrika Trust. Please contact the publisher for further permissions regarding the use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/bio.html.

Biometrika
©1986 Biometrika Trust

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office. For more information on JSTOR contact jstor-info@umich.edu.

©2003 JSTOR
Bayesian analysis of a Poisson process with a change-point

BY A. E. RAFTERY AND V. E. AKMAN

Department of Statistics, Trinity College, Dublin 2, Republic of Ireland

Summary

A Bayesian approach to estimation and hypothesis testing for a Poisson process with a change-point is developed, and an example given.

Some key words: Bayes factor; Coal-mining disasters; Imaginary observation; Improper prior; Log linear intensity function.

1. Introduction

The purpose of this paper is to develop a Bayesian approach to the retrospective analysis of a Poisson process with a single change-point at an unknown time. The rate of occurrence at time \(s \), \(\lambda(s) \), is equal to \(\lambda_1 \) if \(0 \leq s \leq \tau \), and to \(\lambda_2 \) if \(s > \tau \). The analysis is based on the observation period \([0, T]\), during which \(n \) events occur at times \(t = (t_1, \ldots, t_n) \).

In §2 we derive the posterior distribution of the model parameters \(\lambda_1, \lambda_2 \) and \(\tau \). In §3 we derive tests of the existence of a change-point both when the priors are proper, and when vague prior information about the model parameters is represented by limiting improper prior forms. In §4 we give an illustrative example.

Leonard (1978) proposed estimating the parameters of the Poisson process change-point model by minimizing the integrated squared difference between the estimated rate and a different, nonparametric, estimate of the rate function. If, of course, the change is known to have occurred at an event time, the problem reduces to that of a change-point in a sequence of independent exponential variables and may be solved using the methods of Smith (1975) and Diaz (1982). This assumption underlies the work of Commenges & Seal (1985).

Different, but related, problems have been worked on by Kutoytants (1984) who studied the statistical analysis of a Poisson process with a periodic discontinuous rate function, Kalbfleisch & Struthers (1982) who considered a Poisson process analogue of intervention analysis, and Matthews & Farewell (1982) and Nguyen, Rogers & Walker (1984) who analysed hazard rates with change-points.

2. Estimation

We assume that \(\lambda_1, \lambda_2 \) and \(\tau \) are independent a priori, and that the prior densities of \(\lambda_1 \) and \(\lambda_2 \) have the conjugate form

\[
p(\lambda_k) \propto \lambda_k^{b_k} e^{-a_k \lambda_k} \quad (k = 1, 2).
\]

Prior beliefs about dependencies between \(\lambda_1 \) and \(\lambda_2 \) may quite easily be incorporated into the analysis (Smith, 1975, §3).

The likelihood is

\[
p(t | \lambda_1, \lambda_2, \tau) = \lambda_{11}^{N(t)} e^{-\lambda_1 \tau} \lambda_{22}^{N(T) - N(t)} e^{-\lambda_2 (T - \tau)},
\]
where \(N(s) \) is the number of events that occurred in the interval \([0, s]\). Thus the posterior density is such that
\[
p(\lambda_1, \lambda_2, \tau \mid t) \propto p(\tau) \prod_{k=1}^{2} \lambda_k^{r_k(t)-1} e^{-\lambda_k S_k(t)},
\] (2.2)
where \(r_1(\tau) = N(\tau) + b_1 + 1, \quad r_2(\tau) = N(T) - N(\tau) + b_2 + 1, \quad S_1(\tau) = \tau + a_1, \quad S_2(\tau) = (T - \tau) + a_2. \) The posterior density of \(\tau \) is thus
\[
p(\tau \mid t) \propto p(\tau) \prod_{k=1}^{2} S_k(\tau)^{-r_k(t)} \Gamma(r_k(\tau)).
\] (2.3)
The posterior density of \(\lambda_1 \) is obtained by integrating (2.2) over \(\lambda_2 \) and \(\tau \). This does not yield a simple analytic form, and the function in (2.2) is discontinuous in \(\tau \), so that the most convenient form for numerical integration is as a sum of integrals of continuous functions, as follows:
\[
p(\lambda_1 \mid t) \propto \sum_{i=0}^{n} \Gamma(r_{2i}) I_1^{(i)} I_1^{(1)},
\] where
\[
I_1^{(1)} = \int_{t_i}^{t_{i+1}} e^{-\lambda_1 S_1(\tau)} S_2(\tau)^{-r_{2i}} p(\tau) d\tau, \quad r_{1i} = i + b_1 + 1,
\]
\[
r_{2i} = n - i + b_2 + 1, \quad t_0 = 0, \quad t_{n+1} = T.
\] The result for \(\lambda_2 \) is similar.

The posterior distribution of the magnitude of the change, \(\beta = \lambda_1/\lambda_2 \), follows from the fact that by Lindley (1965, Th. 7.3.2), conditional on \(\tau \)
\[
\{S_1(\tau) r_2(\tau)\} \{S_2(\tau) r_1(\tau)\}^{-1} \beta \sim F_{\alpha_1, \alpha_2},
\] (2.4)
where \(\alpha_k = 2r_k(\tau) \) \((k = 1, 2)\). Thus
\[
p(\beta \mid t) \propto \sum_{i=0}^{n} \Gamma(r_{1i}) \Gamma(r_{2i}) \beta^{r_{1i} - 1} I_1^{(2)},
\] (2.5)
where
\[
I_1^{(2)} = \int_{t_i}^{t_{i+1}} \frac{S_2(\tau)/S_1(\tau)}{S_2(\tau) + \beta S_1(\tau)}^{r_{1i}} \Gamma(r_{2i}) \beta S_1(\tau)^{-1} (a_0 + T)^{-n + b_1 + b_2 + 2} p(\tau) d\tau.
\]

3. Hypothesis testing

Here we view the problem of testing for a change as one of comparing the change-point model with one which assumes a constant rate. We denote the constant rate model by \(M_0 \), its parameter by \(\lambda_0 \), and the change-point model by \(M_1 \). We assume that the prior density of \(\lambda_0 \) has the form (2.1) with \(k = 0 \). Then the Bayes factor for \(M_0 \) against \(M_1 \) is defined by
\[
B_{01}^{(0)}(t, T) = p(t \mid M_0)/p(t \mid M_1),
\] (3.1)
where
\[
p(t \mid M_0) = \int_{0}^{\infty} p(t \mid \lambda_0) p(\lambda_0) d\lambda_0
\]
\[
= \Gamma(n + b_0 + 1) \{\Gamma(b_0 + 1)\}^{-1} a_0^{b_0+1} (a_0 + T)^{-(n + b_0 + 1)},
\]
\[
p(t \mid M_1) = \int_{0}^{T} \int_{0}^{\infty} \int_{0}^{\infty} p(t \mid \lambda_1, \lambda_2, \tau) p(\lambda_1, \lambda_2, \tau) d\lambda_1 d\lambda_2 d\tau
\]
\[
= \left[\prod_{k=1}^{2} a_k^{b_k+1} \{\Gamma(b_k + 1)\}^{-1} \right] \sum_{i=0}^{n} \Gamma(r_{1i}) \Gamma(r_{2i}) I_1^{(3)},
\]
where
\[I^{(3)}_1 = \int_{t_i}^{t_{i+1}} S_1(\tau)^{-\tau_1} S_2(\tau)^{-\tau_2} p(\tau) \, d\tau. \]

We now consider the situation where vague prior information about the parameters \(\lambda_0, \lambda_1 \) and \(\lambda_2 \) is represented by limiting improper prior forms. This is specified by \(a_k \to 0 \) (\(k = 0, 1, 2 \)) in (2·1), so that \(p(\lambda_0) = c_0 \lambda_0^0 \) and \(p(\lambda_1, \lambda_2, \tau) = c_1 \lambda_1^{b_1} \lambda_2^{b_2} p(\tau) \). The resulting Bayes factor involves an arbitrary, unspecified, ratio of constants, \(c_0/c_1 \), and is thus not well-defined. We shall allow \(c_0/c_1 \) to depend on \(T \), denoting it by \(c_{01}(T) \).

We adopt the method for assigning \(c_{01}(T) \) proposed by Spiegelhalter & Smith (1982). This consists of imposing a boundary condition on the Bayes factor as a function of the data. The boundary condition is that a data set which involves the smallest possible sample size permitting a comparison of \(M_0 \) and \(M_1 \) and provides maximum possible support for \(M_0 \) should yield a Bayes factor which is only very slightly greater than one.

This method does not provide a solution to the problem for all improper prior specifications in the case of nonhomogeneous Poisson processes. We have shown in an unpublished paper that it does yield an operational solution if the Bayes factor in (3·1) is bounded as a function of \(t \) and invariant to scale changes in the time variable. Under mild conditions on \(p(\tau) \), for this to be the case here it is necessary that \(c_{01}(T) \) be proportional to \(T^{-(1+b_1+b_2-b_0)} \).

When \(p(\tau) = T^{-1} \) and \(b_1 = b_2 = 1 \), the appropriate boundary condition is that a data set consisting of a single event occurring half-way through the observation period should yield a Bayes factor approximately equal to one. If \(b_0 = b_1 = b_2 = -\frac{1}{2} \), corresponding to Jeffreys’s prior for \(\lambda_0 \) and also, conditionally on \(\tau \), for \(\lambda_1 \) and \(\lambda_2 \), we have
\[c_{01}(T) = 4\pi^\frac{1}{2} T^{-\frac{4}{2}}, \]
so that
\[B^{(n)}_{01}(t, T) = 4\pi^\frac{1}{2} T^{-n} \left\{ \sum_{i=0}^{n} \Gamma(n+\frac{1}{2}) \Gamma(n-1+\frac{1}{2}) I^{(4)}_i \right\}^{-1}, \quad (3·2) \]
where
\[I^{(4)}_i = \int_{t_i}^{t_{i+1}} \tau^{-(i+\frac{1}{2})} (T-\tau)^{-(n-i+\frac{1}{2})} d\tau. \]
Equation (3·2) can provide the basis for an informal sequential procedure (Smith, 1975, §5).

4. An illustrative example

We now apply the results of the previous sections to the data set consisting of intervals between coal-mining disasters given by Jarrett (1979), who corrected and extended the data set given by Maguire, Pearson & Wynn (1952). We extend the data set further again by noting from the Colliery Year Book and Coal Trades Directory 1963–64 that no disasters appear to have occurred between 1 January and 14 March 1851, or between 23 March and 31 December 1962.

Previous authors, including Barnard (1953), Cox & Lewis (1966, p. 42), Jarrett (1979) and Berman (1981), have fitted smoothly changing rates of occurrence to the data. However, both the plot of the cumulative number of disasters against time of Jarrett (1979, Fig. 1) and the histogram with the smallest risk function estimate given by Rudemo (1982, Fig. 12A) suggest that a change-point model may be appropriate.
We use a vague prior distribution, specified by setting $a_k = 0$ and $b_k = -\frac{1}{2}$ ($k = 1, 2$) in (2.1), and $p(\tau) = T^{-1}$. Fig. 1 shows the posterior distribution of τ obtained from (2.3). The posterior mode is 10 March 1890 and the posterior median is 27 August 1890. A 95% Bayesian estimation interval for τ, with limits at the $2\frac{1}{2}$% and $97\frac{1}{2}$% points of the posterior distribution is [15 May 1887, 3 August 1895].

By (2.5), the magnitude of the change β has posterior mean 3.41 with 95% highest posterior density region [2.48, 4.46]. By comparison, using (2.4) conditionally on τ being equal to its posterior mode gives posterior mean 3.52 and 95% highest posterior density region [2.56, 4.68] for β, which is a fairly reasonable approximation.

Using (3.2), the Bayes factor for no change against a change-point is 1.58×10^{-14}, which constitutes strong evidence for a change.

We now compare the change-point model with the log linear rate model favoured by previous authors. Using methods similar to those developed in §3, it can be shown that the Bayes factor for a constant rate against a decreasing log linear rate is 6.28×10^{-11}. Thus, assuming prior indifference between the two models, the posterior odds in favour of the change-point model as against the log linear rate model are over 4000 : 1.

This suggests that the observed decrease in the rate of occurrence between 1851 and 1962 may consist mainly of a fairly abrupt decrease around the 1887–1895 period, rather than a sustained gradual decrease. This may be associated with changes in the coal industry around that time, namely a severe decline in labour productivity starting at the end of the 1880s, and the emergence of the Miners' Federation at the end of 1889; see Taylor (1968). A possible causal link is suggested by Dwyer (1983) who argues that industrial accident rates are closely tied to the state of functioning of social relations in the workplace, so that trade unionization may decrease accident rates, while factors associated with higher labour productivity, such as overtime, may cause an increase in accident rates.
Poisson process with a change-point

ACKNOWLEDGEMENTS

We are grateful to A. F. M. Smith, T. Dwyer and an anonymous referee for very helpful comments. Section 2 and part of §4 are based on a chapter of the second author’s Ph.D. thesis written at Trinity College, Dublin under the supervision of the first author. V. E. Akman’s work was supported by Postgraduate Awards from the Irish Department of Education and Trinity College, Dublin.

REFERENCES

[Received April 1985. Revised August 1985]