Stat 302
Statistical Software and Its Applications
SAS: Simple Linear Regression

Fritz Scholz
Department of Statistics, University of Washington
Winter Quarter 2015

February 16, 2015
data spirit;
 infile "U:\data\SpiritStLouis.csv" dsd
 firstobs=2;
 input gas weight headwind TO_distance; run;
title "Spirit of St. Louis Takeoff Distance";
proc print data = spirit; run;
title "Scatter Plot with Regression Line";
proc sgplot data=spirit;
 reg y = weight x=TO_distance; run;
title "Correlation";
proc corr data = spirit;
 var weight TO_distance; run;
title "Simple Linear regression";
proc reg data = spirit;
 model weight = TO_distance;
run;

Spirit of St. Louis Takeoff Distance

<table>
<thead>
<tr>
<th>Obs</th>
<th>gas</th>
<th>weight</th>
<th>headwind</th>
<th>TO_distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>2600</td>
<td>7</td>
<td>229</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>2800</td>
<td>9</td>
<td>287</td>
</tr>
<tr>
<td>3</td>
<td>111</td>
<td>3050</td>
<td>9</td>
<td>389</td>
</tr>
<tr>
<td>4</td>
<td>151</td>
<td>3300</td>
<td>6</td>
<td>483</td>
</tr>
<tr>
<td>5</td>
<td>201</td>
<td>3600</td>
<td>4</td>
<td>615</td>
</tr>
<tr>
<td>6</td>
<td>251</td>
<td>3900</td>
<td>2</td>
<td>800</td>
</tr>
<tr>
<td>7</td>
<td>301</td>
<td>4200</td>
<td>0</td>
<td>1023</td>
</tr>
</tbody>
</table>
Correlation

The CORR Procedure

2 Variables: weight TO_distance

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>7</td>
<td>3350</td>
<td>583.80933</td>
<td>23450</td>
<td>2600</td>
<td>4200</td>
</tr>
<tr>
<td>TO_distance</td>
<td>7</td>
<td>546.57143</td>
<td>286.64488</td>
<td>3826</td>
<td>229.0000</td>
<td>1023</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients, N = 7

<table>
<thead>
<tr>
<th></th>
<th>weight</th>
<th>TO_distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>1.0000</td>
<td>0.98882</td>
</tr>
<tr>
<td>TO_distance</td>
<td>0.9888</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

Prob > |r| under H0: Rho=0

- weight: 1.00000 <.0001
- TO_distance: 0.98882 <.0001
- TO_distance: 1.00000
Simple Linear regression

The REG Procedure
Model: MODEL1
Dependent Variable: weight

Number of Observations Read 7
Number of Observations Used 7

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>1999529</td>
<td>1999529</td>
<td>219.87</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>5</td>
<td>45471</td>
<td>9094.24340</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>6</td>
<td>2045000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 95.36374 R-Square 0.9778
Dependent Mean 3350.00000 Adj R-Sq 0.9733
Coeff Var 2.84668

Parameter Estimates

<table>
<thead>
<tr>
<th>Variable</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>t Value</th>
<th>Pr ></th>
<th>t</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>2249.24429</td>
<td>82.52306</td>
<td>27.26</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TO_distance</td>
<td>1</td>
<td>2.01393</td>
<td>0.13582</td>
<td>14.83</td>
<td><.0001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simple Linear regression

The REG Procedure
Model: MODEL1
Dependent Variable: weight

Fit Diagnostics for weight

Observations 7
Parameters 2
Error DF 5
MSE 5094.2
R-Square 0.9778
Adj R-Square 0.9733
data spirit;
infile "U:\data\SpiritStLouis.csv" dsd firstobs=2;
input gas weight headwind TO_distance;
TO_DistL10 = log10(TO_Distance);
weightL10 = log10(weight); run;
title "Spirit of St. Louis Takeoff Distance L10";
proc print data = spirit; run;
title "Scatter Plot with Regression Line L10";
proc sgplot data=spirit;
reg y = weightL10 x = TO_distL10; run;
title "Correlation L10";
proc corr data = spirit;
var weightL10 TO_distL10; run;
title "Simple Linear regression L10";
proc reg data = spirit;
model weightL10 = TO_distL10;
run;
Spirit of St. Louis Takeoff Distance L10

<table>
<thead>
<tr>
<th>Obs</th>
<th>gas</th>
<th>weight</th>
<th>headwind</th>
<th>TO_distance</th>
<th>TO_DistL10</th>
<th>weightL10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>2600</td>
<td>7</td>
<td>229</td>
<td>2.35984</td>
<td>3.41497</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>2800</td>
<td>9</td>
<td>287</td>
<td>2.45788</td>
<td>3.44716</td>
</tr>
<tr>
<td>3</td>
<td>111</td>
<td>3050</td>
<td>9</td>
<td>389</td>
<td>2.58995</td>
<td>3.48430</td>
</tr>
<tr>
<td>4</td>
<td>151</td>
<td>3300</td>
<td>6</td>
<td>483</td>
<td>2.68395</td>
<td>3.51851</td>
</tr>
<tr>
<td>5</td>
<td>201</td>
<td>3600</td>
<td>4</td>
<td>615</td>
<td>2.78888</td>
<td>3.55630</td>
</tr>
<tr>
<td>6</td>
<td>251</td>
<td>3900</td>
<td>2</td>
<td>800</td>
<td>2.90309</td>
<td>3.59106</td>
</tr>
<tr>
<td>7</td>
<td>301</td>
<td>4200</td>
<td>0</td>
<td>1023</td>
<td>3.00988</td>
<td>3.62325</td>
</tr>
</tbody>
</table>
Scatter Plot with Regression Line L10

WeightL10 vs. TO_DistL10
The CORR Procedure

Correlation L10

2 Variables: weightL10 TO_DistL10

Simple Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>Std Dev</th>
<th>Sum</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>weightL10</td>
<td>7</td>
<td>3.51937</td>
<td>0.07598</td>
<td>24.63556</td>
<td>3.41497</td>
<td>3.62325</td>
</tr>
<tr>
<td>TO_DistL10</td>
<td>7</td>
<td>2.68478</td>
<td>0.23461</td>
<td>18.79345</td>
<td>2.35984</td>
<td>3.00988</td>
</tr>
</tbody>
</table>

Pearson Correlation Coefficients, N = 7

Prob > |r| under H0: Rho=0

<table>
<thead>
<tr>
<th></th>
<th>weightL10</th>
<th>TO_DistL10</th>
</tr>
</thead>
<tbody>
<tr>
<td>weightL10</td>
<td>1.00000</td>
<td>0.99949 <.0001</td>
</tr>
<tr>
<td>TO_DistL10</td>
<td>0.99949 <.0001</td>
<td>1.00000</td>
</tr>
</tbody>
</table>
Simple Linear regression L10

The REG Procedure
Model: MODEL1
Dependent Variable: weightL10

Number of Observations Read 7
Number of Observations Used 7

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1</td>
<td>0.03460</td>
<td>0.03460</td>
<td>4945.51</td>
<td><.0001</td>
</tr>
<tr>
<td>Error</td>
<td>5</td>
<td>0.00003499</td>
<td>0.0000700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>6</td>
<td>0.03464</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.00265 R-Square 0.9990
Dependent Mean 3.51937 Adj R-Sq 0.9988
Coeff Var 0.07516

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|---------------|----|--------------------|----------------|---------|------|
| Intercept | 1 | 2.65030 | 0.01240 | 213.76 | <.0001 |
| TO_DistL10 | 1 | 0.32370 | 0.00460 | 70.32 | <.0001 |
Simple Linear regression L10

The REG Procedure
Model: MODEL1
Dependent Variable: weightL10

Observations 7
Parameters 2
Error DF 5
MSE 7E-6
R-Square 0.889
Adj R-Square 0.888
The unfortunate aspect of this second analysis, based on log-transforms, is that the scatter plots show the log-value scales and not the properly scaled original units.

I was able to make a plot with original units, indicated on a distorted (log-transformed) scale.

I was not able to easily add any fitted line to it. In R this was easy via `abline`.

This link shows how to add a sloped line to a scatter plot adding a line to a scatter plot, but it does not work for the log-scale version produced by the code on the next slide.

That it took some effort to add such a sloped line in SAS 9.2 is telling in itself. The link to it seems to have disappeared.

My solution to it seems klutzy, but it did the trick.
data spirit;
infile "U:\data\SpiritStLouis.csv" dsd firstobs=2;
input gas weight headwind TO_distance;
TO_DistL10 = log10(TO_Distance);
weightL10 = log10(weight);
run;
title "Scatter Plot with Log Scale";
proc sgplot data = spirit;
scatter y = weight x = TO_distance;
yaxis type = log logstyle = logexpand logbase = 10
min = 2000 max = 6000;
xaxis type = log logstyle = logexpand logbase = 10
min = 100 max = 3000;
*lineparm x = 500 y=3 slope=1.5; * does not work;
run;
Scatter Plot with Log Scale
data spirit;
input gas weight headwind TO_distance x1;
TO_DistL10 = log10(TO_Distance);
weightL10 = log10(weight);
LS_line = 10**(2.6503023 * x1**0.3237002);
datalines;
36 2600 7 229 .
71 2800 9 287 .
111 3050 9 389 .
151 3300 6 483 .
201 3600 4 615 .
251 3900 2 800 .
301 4200 0 1023 .
. . . . 100
. . . . 3000
run;
title "Spirit of St. Louis Takeoff Distance L10";
proc print data = spirit;
run;
title
 "Log10-Log10 Scatter Plot with Regression Line";
proc sgplot data = spirit;
scatter y = weight x = TO_distance;
yaxis type = log logstyle = logexpand logbase = 10
 min = 2000 max = 6000;
xaxis type = log logstyle = logexpand logbase = 10
 min = 100 max = 3000;
 series x = x1 y = LS_line; ∗ this connects points;
run;
The Output from Code

Spirit of St. Louis Takeoff Distance L10

<table>
<thead>
<tr>
<th>Obs</th>
<th>gas</th>
<th>weight</th>
<th>headwind</th>
<th>TO_distance</th>
<th>x1</th>
<th>TO_DistL10</th>
<th>weightL10</th>
<th>LS_line</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
<td>2600</td>
<td>7</td>
<td>229</td>
<td>.</td>
<td>2.35984</td>
<td>3.41497</td>
<td>.</td>
</tr>
<tr>
<td>2</td>
<td>71</td>
<td>2800</td>
<td>9</td>
<td>287</td>
<td>.</td>
<td>2.45788</td>
<td>3.44716</td>
<td>.</td>
</tr>
<tr>
<td>3</td>
<td>111</td>
<td>3050</td>
<td>9</td>
<td>389</td>
<td>.</td>
<td>2.58995</td>
<td>3.48430</td>
<td>.</td>
</tr>
<tr>
<td>4</td>
<td>151</td>
<td>3300</td>
<td>6</td>
<td>483</td>
<td>.</td>
<td>2.68395</td>
<td>3.51851</td>
<td>.</td>
</tr>
<tr>
<td>5</td>
<td>201</td>
<td>3600</td>
<td>4</td>
<td>615</td>
<td>.</td>
<td>2.78888</td>
<td>3.55630</td>
<td>.</td>
</tr>
<tr>
<td>6</td>
<td>251</td>
<td>3900</td>
<td>2</td>
<td>800</td>
<td>.</td>
<td>2.90309</td>
<td>3.59106</td>
<td>.</td>
</tr>
<tr>
<td>7</td>
<td>301</td>
<td>4200</td>
<td>0</td>
<td>1023</td>
<td>.</td>
<td>3.00988</td>
<td>3.62325</td>
<td>.</td>
</tr>
<tr>
<td>8</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>100</td>
<td>.</td>
<td>1984.74</td>
</tr>
<tr>
<td>9</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>3000</td>
<td>.</td>
<td>5968.25</td>
</tr>
</tbody>
</table>
Log10-Log10 Scatter Plot with Regression Line
data multi;
 do N = 10000 to 50000 by 10000;
 N2 = N*N;
 fit = .068 -.00000811*N + 1.228571E-9*N2;
 input time @; output;
 end; datalines;
0.11 0.39 0.95 1.69 2.74
run;
title "Concatenation Data: x <- c(x,i)" ;
proc print data=multi noobs;
var time N fit; run;
title "Quadratic Model Fit" ;
proc reg data=multi;
 model time = N N2; run; title "Quadratic Fit";
proc gplot data = multi; plot fit*N;
symbol value = dot interpol=sms line=1 width=2;
plot2 time*N; * this adds to a plot; run;
The Output from Code

Concatenation Data: x <- c(x,i)

<table>
<thead>
<tr>
<th>time</th>
<th>N</th>
<th>fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.11</td>
<td>10000</td>
<td>0.10976</td>
</tr>
<tr>
<td>0.39</td>
<td>20000</td>
<td>0.39723</td>
</tr>
<tr>
<td>0.95</td>
<td>30000</td>
<td>0.93041</td>
</tr>
<tr>
<td>1.69</td>
<td>40000</td>
<td>1.70931</td>
</tr>
<tr>
<td>2.74</td>
<td>50000</td>
<td>2.73393</td>
</tr>
</tbody>
</table>
The REG Procedure
Model: MODEL1
Dependent Variable: time

Quadratic Model Fit

Number of Observations Read 5
Number of Observations Used 5

Analysis of Variance

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Sum of Squares</th>
<th>Mean Square</th>
<th>F Value</th>
<th>Pr > F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2</td>
<td>4.51467</td>
<td>2.25734</td>
<td>5338.30</td>
<td>0.0002</td>
</tr>
<tr>
<td>Error</td>
<td>2</td>
<td>0.00084571</td>
<td>0.00042286</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected Total</td>
<td>4</td>
<td>4.51552</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Root MSE 0.02056 R-Square 0.9998
Dependent Mean 1.17600 Adj R-Sq 0.9996
Coeff Var 1.74860

Parameter Estimates

| Variable | DF | Parameter Estimate | Standard Error | t Value | Pr > |t| |
|----------|----|--------------------|----------------|---------|------|
| Intercept| 1 | 0.06800 | 0.04410 | 1.54 | 0.2631 |
| N | 1 | -0.00000811 | 0.00000336 | -2.41 | 0.1371 |
| N2 | 1 | 1.228571E-9 | 5.49582E-11 | 22.35 | 0.0020 |
The REG Procedure
Model: MODEL1
Dependent Variable: time

Fit Diagnostics for time

- Residual vs Predicted Value
- RStudent vs Predicted Value
- Residual vs Quantile
- RStudent vs Leverage
- Cook's D vs Observation
- Proportion Less vs Fit-Mean
- Percent vs Residual

Observations 5
Parameters 3
Error DF 2
MSE 0.0004
R-Square 0.9998
Adj R-Square 0.9996
The Output from Code

Residual by Regressors for time

- Residual values range from -0.02 to 0.02.
- N values range from 10,000 to 50,000.
- N2 values range from 0 to 2.5E9.
Quadratic Fit

Fit vs. Time

N vs. Time