Matrices

- A matrix object is a rectangular $n \times m$ array of elements of same type: numerical, character, etc.
- $n$ is the number of rows, $m$ is the number of columns.
- Typically rows represent subjects, and columns represent different variables measured for each subject.
- The rectangular data structure ensures same number of measurements per subject.
- Having more than one variable per subject allows us to examine correlations between various measurements.
- We could also view such data as a collection of equal length variable vectors, stacked next to each other.
How to Create a Matrix

```r
> A <- matrix(1:12, nrow=3, ncol=4, byrow=F)
> A

[1,]  1  4  7 10
[2,]  2  5  8 11
[3,]  3  6  9 12

> B <- matrix(letters[1:12], nrow=3, byrow=T)
> B

[1,]  "a" "b" "c" "d"
[2,]  "e" "f" "g" "h"
[3,]  "i" "j" "k" "l"

Only nrow or ncol need to be specified.
```
Stacking Columns or Rows Using `cbind()` and `rbind()`

```r
> A <- cbind(1:3, 4:6, 7:9, 10:12)
> A
[1,]  1   4   7  10
[2,]  2   5   8  11
[3,]  3   6   9  12

> B <- rbind(letters[1:4], letters[5:8], + letters[9:12])
> B
[1,]  "a"  "b"  "c"  "d"
[2,]  "e"  "f"  "g"  "h"
[3,]  "i"  "j"  "k"  "l"
```
> names(B)
NULL
> rownames(B) <- c("row1","row2","row3")
> B
row1  "a"  "b"  "c"  "d"
row2  "e"  "f"  "g"  "h"
row3  "i"  "j"  "k"  "l"
> colnames(B) <- c("col1","col2","col3","col4")
> B
      col1 col2 col3 col4
row1  "a"  "b"  "c"  "d"
row2  "e"  "f"  "g"  "h"
row3  "i"  "j"  "k"  "l"
### Extracting Matrix Values by Index

```r
> A
[1,] 1  4  7  10
[2,] 2  5  8  11
[3,] 3  6  9  12
> A[1:2,3:4]
  [,1] [,2]
[1,]  7  10
[2,]  8  11
```
### Extracting Matrix Values by Name

```r
> B

```
col1  col2  col3  col4
row1  "a"  "b"  "c"  "d"
row2  "e"  "f"  "g"  "h"
row3  "i"  "j"  "k"  "l"
```

```r
> B[c("row1","row3"),c("col2","col3")]

```
col2  col3
row1  "b"  "c"
row3  "j"  "k"
```

```r
> B[c("row1","row3"),2:3]

```
col2  col3
row1  "b"  "c"
row3  "j"  "k"
```
Matrix Arithmetic

```r
> Ar <- matrix(12:1, ncol=4)
> A+Ar
[1,]  13  13  13  13
[2,]  13  13  13  13
[3,]  13  13  13  13
```

Matrices are added by adding corresponding elements.
Same for -, *, /.
Matrices must have same dimension (columns and rows), but
**Matrix/Vector Arithmetic**

> A

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>4</th>
<th>7</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

> A+1:3

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>8</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

> A+1:4

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>8</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>16</td>
</tr>
</tbody>
</table>

Vectors are expanded by column to a conforming matrix
Same for −, *, /. 
An $m \times n$ matrix $C$ can be multiplied by an $n \times k$ matrix $D$ using the command $C \; \%*\%\; D$

\[
\begin{align*}
> & \quad C \\
& \left[
\begin{array}{cc}
[1,] & 1 & 3 \\
[2,] & 2 & 4 \\
\end{array}
\right] \\
> & \quad D \\
& \left[
\begin{array}{ccc}
[1,] & 6 & 4 & 2 \\
[2,] & 5 & 3 & 1 \\
\end{array}
\right] \\
> & \quad C \; \%*\%\; D \\
& \left[
\begin{array}{ccc}
[1,] & 21 & 13 & 5 \\
[2,] & 32 & 20 & 8 \\
\end{array}
\right]
\end{align*}
\]

To partially verify: $1 \cdot 6 + 3 \cdot 5 = 21$, $1 \cdot 4 + 3 \cdot 3 = 13$
An $m \times n$ matrix $C$ can be multiplied by an $n \times 1$ vector $d$ using the same command $C \ %*% \ d$

\[
\begin{bmatrix}
1 & 3 \\
2 & 4
\end{bmatrix}
\begin{bmatrix}
2 \\
3
\end{bmatrix}
= 
\begin{bmatrix}
1 \cdot 2 + 3 \cdot 3 \\
2 \cdot 2 + 4 \cdot 3
\end{bmatrix}
= 
\begin{bmatrix}
11 \\
16
\end{bmatrix}
\]
Inverting a Square Matrix

For some square matrices $G$ we can find a matrix $G^{-1}$ such that by matrix multiply we get $GG^{-1} = G^{-1}G = I$. $G^{-1} = \text{solve}(G)$. Here $I$ is the identity matrix, 1’s on diagonal, 0’s off diagonal.

```r
> G <- matrix(1:4,ncol=2)
> G
[,1] [,2]
[1,] 1  3
[2,] 2  4
> solve(G)
[,1] [,2]
[1,] -2  1.5
[2,]  1 -0.5
> solve(G) %*% G
[,1] [,2]
[1,]  1  0
[2,]  0  1
```
Solving an $n \times n$ System of Equations

For a given $n \times n$ matrix $A = (a_{ij})$ and given vector $b = (b_1, \ldots, b_n)$ solve the following equations for the unknown vector $x = (x_1, \ldots, x_n)$

\[
a_{11}x_1 + \ldots + a_{1n}x_n = b_1 \\
\vdots = \vdots \\
a_{n1}x_1 + \ldots + a_{nn}x_n = b_n
\]

in matrix multiply form this is just $Ax = b$ for vectors $x = (x_1, \ldots, x_n)$ and $b = (b_1, \ldots, b_n)$. $x = A^{-1}Ax = A^{-1}b$.

$x$ can be obtained by the solve command via $\text{solve}(A, b) = x$.

For some $A$ (singular) the equations cannot be solved, and $A^{-1}$ does not exist.
The notion of matrices as $m \times n$ arrays can be generalized to $n_1 \times n_2 \times n_3 \times \ldots$ arrays.

```r
> array(1:12, dim=c(2,3,2))
```

```
, , 1

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

[,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

Many of the matrix operations work here as well. Leave it at that.
Lists are objects which are collections of other objects, such as data or function objects, lists, and lists of lists, ...

```r
> L <- list(M=1:4, A=letters[1:6], + F = function(x){x^2})
> L
$M
[1] 1 2 3 4

$A
[1] "a" "b" "c" "d" "e" "f"

$F
function (x)
{
    x^2
}
```
Indexing of Lists via [ ]

Within [ ] use an index vector or vector of component names

> L[1:2]
$M
[1] 1 2 3 4

$A
[1] "a" "b" "c" "d" "e" "f"

> L[c("M","A")]
$M
[1] 1 2 3 4

$A
[1] "a" "b" "c" "d" "e" "f"

# sublist of first 2 elements of the source list
Within [[ ]] use a **single** index or component name

> L["A"] # same as L$A
> [1] "a" "b" "c" "d" "e" "f"

> L[[2]]
> [1] "a" "b" "c" "d" "e" "f"
# You get the indicated list object,
# not a sublist

> L[[2]][3] # same as L$A[3]
> [1] "c"

> L[[3]](6) # same as L$F(6)
> [1] 36

**The $ referencing works only when list component is named.**
List within a List

```r
> LL <- list(num = 1:3, list(letters[3:1],
+ LETTERS[1:2]))
> LL
$num # first component has name num
[1] 1 2 3

[[2]] # 2nd list component does not have a name
[[2]][[1]] # 1st subcomponent of 2nd component
[1] "c" "b" "a"

[[2]][[2]] # 2nd subcomponent of 2nd component
[1] "A" "B"

> LL[[2]][[1]] # 1st subcomp. of 2nd comp.
[1] "c" "b" "a"
> LL[[2]][[1]][2] # 2nd element of previous
[1] "b"
```
Data Frames

Data of different types can be captured in data frame objects.

```r
> X <- data.frame(num=1:6, let=letters[6:1],
+ Date=as.Date("1965/5/15") + 0:5)
> X
 num let Date
1 1 f 1965-05-15
2 2 e 1965-05-16
3 3 d 1965-05-17
4 4 c 1965-05-18
5 5 b 1965-05-19
6 6 a 1965-05-20
> str(X)
'data.frame': 6 obs. of 3 variables:
$ num : int 1 2 3 4 5 6
$ let : Factor w/ 6 levels "a","b","c","d","e",..: 6 5 4 3 2 1
$ Date: Date, format: "1965-05-15" "1965-05-16" ..
A data frame is really a special list, with the restriction that all its components are vectors of various types, all of the same length.

Referencing is the same as with lists

```r
> X[[1]]  # same as X$num
[1] 1 2 3 4 5 6
```

Note that `X$let` is automatically a factor.

To keep strings as character, use `stringsAsFactors=F` in `data.frame()`.
> X <- data.frame(num=1:6, let=letters[6:1],
+ Date=as.Date("1965/5/15") + 0:5,
+ stringsAsFactors=F)
> X[1:3, 2:3] # extract from data frames ~ matrices
   let     Date
1 f 1965-05-15
2 e 1965-05-16
3 d 1965-05-17
> str(X[1:3, 2:3])
'data.frame': 3 obs. of 2 variables:
$ let : chr  "f" "e" "d"
$ Date: Date, format: "1965-05-15" "1965-05-16" ..