Reading: Klebaner, chapter 4, pages 102-116,
Klebaner, chapter 7, pages 169-177.

Reminder: No Problem Set 5 next week;
Problems Set 5 will be handed out on Tuesday 18 February.

Lectures by Shuliu Yuan on February 4, 6, 11 will cover renewal theory
··· based on Durrett, chapter 3; Karlin and Taylor, chapter 5

Please work on your projects during the next two weeks.

Due: Tuesday, 4 February 2014.

1. Klebaner, Exercise 4.1, page 114: Let \(\tau_1 < \tau_2 \) be stopping times with respect to the natural filtration \(\{ \mathcal{F}_t \}_{t \geq 0} \) of Brownian motion \(B \) on \([0, T]\). Show that \(X(t) = 1_{(\tau_1, \tau_2]}(t) \) is a simple predictable process.

2. Klebaner, Exercise 4.5, page 115: Show that if \(X(t, s) \) is a non-random function of both \(s \) and \(t \) with \(\int_0^t X^2(t, s)ds < \infty \), then \(Y(t) = \int_0^t X(t, s)dB(s) \) is a Gaussian random variable \(Y(t) \), and the process \(\{ Y(t) : 0 \leq t \leq T \} \) is a Gaussian process with zero mean and covariance function given by \(Cov(Y(t), Y(t + v)) = \int_0^t X(t, s)X(t + v, s)ds \) for \(v \geq 0 \).

3. Let \(B \) be standard Brownian motion and let \(x \in \mathbb{R} \). Define a new process \(Y_t \) by
\[
Y_t = e^{-t/2}x + e^{-t/2} \int_0^t e^{s/2}dB_s.
\]

(i) Show that \(\{ Y_t : t \geq 0 \} \) is a Gaussian process with mean \(e^{-t/2}x \) and variance \(1 - e^{-t} \).

(ii) Now let \(Z \sim N(0, 1) \) be independent of \(B \) and define \(\tilde{Y}(t) \) by
\[
\tilde{Y}_t = e^{-t/2}Z + e^{-t/2} \int_0^t e^{s/2}dB_s.
\]

Show that \(\tilde{Y} \) is a mean 0 Gaussian process with variance 1, and show that \(Y(t) \overset{d}{=} e^{-t/2}x + e^{-t/2}B(e^t - 1) \). Thus with \(Z(t) \equiv \int_0^t e^{s/2}dB(s) \), \(Z(t) \overset{d}{=} B(e^t - 1) \) as processes, or, equivalently, \(Z(\log(t + 1)) \overset{d}{=} B(t) \).

(iii) Compute the covariance of the process \(\tilde{Y} \). The processes \(Y \) and \(\tilde{Y} \) are known as Ornstein-Uhlenbeck processes.
4. Let \(X_n \) be a sequence of random variables with normal distributions \(N(\mu_n, \sigma_n^2) \) and suppose that \(X_n \to_d X \). (i) Show that the distribution of \(X \) is either normal or degenerate (i.e. \(P(X = x_0) = 1 \) for some \(x_0 \in \mathbb{R} \)).
(ii) Show that if \(E(X_n) \to \mu \) and \(\text{Var}(X_n) \to \sigma^2 > 0 \), then the limiting distribution (of \(X \)) is \(N(\mu, \sigma^2) \).
(iii) Since convergence in probability implies convergence in distribution, deduce convergence of Itô integrals of simple deterministic processes to a Gaussian limit.

5. Use the Itô isometry to calculate the variances of
\[
\int_0^t |B_s|^{1/2} dB_s \quad \text{and} \quad \int_0^t (B_s + s)^2 ds.
\]

6. **Optional bonus problem:** The integrals
\[
I_1 = \int_0^t B(s) ds \quad \text{and} \quad I_2 = \int_0^t B(s)^2 ds
\]
are not stochastic integrals, although they are random variables (and define natural stochastic processes). For each \(\omega \) the integrands are nice continuous functions of \(s \) and the \(ds \) integration is just the traditional calculus integration. Find the mean and variance of the the random variables \(I_1 \) and \(I_2 \).