Figure 1: Uniform Empirical Distribution Function, $n = 50$.

Figure 2: Uniform Empirical Process, $n = 50$.
Figure 3: Uniform Empirical Distribution Function, $n = 100$.

Figure 4: Uniform Empirical Process, $n = 100$.
Figure 5: Uniform Empirical Distribution Function, $n = 500$.

Figure 6: Uniform Empirical Process, $n = 500$.
Figure 7: Uniform Empirical Distribution Function, \(n = 1000 \).

Figure 8: Uniform Empirical Process, \(n = 1000 \).
Figure 9: Partial Sum Process, Bernoulli(1/2) $n = 1000$.

Figure 10: Partial Sum Process, Bernoulli(1/2) $n = 1000$.
Figure 11: Partial Sum Process, Bernoulli(1/2) $n = 1000$.

Figure 12: Partial Sum Process, $N(0, 1)$, $n = 1000$.
Figure 13: Partial Sum Process, $N(0,1), n = 1000$.

Figure 14: Partial Sum Process, $N(0,1), n = 1000$.
Mathematica Code for Figures 1-8:

n = 50
x = Table[Random[], {n}]
yy = Sort[x]
zz = Table[k, {k, 1, n}]*(1/n) //N
Table[{yy[[i]], zz[[i]]}, {i, 1, n}]
Delta[x_] := 0 /; x < 0
Delta[x_] := 1 /; x >= 0
DE[x_] := Table[{Delta[yy[[i]] - x]}, {i, 1, n}]
EDF[n_, x_] := 1. - Apply[Plus, DE[x]]*(1/n) //N
Funif[x_] := x
EMP[n_, x_] := Sqrt[n]*(EDF[n, x] - Funif[x])
Plot[{EDF[n, x], Funif[x]}, {x, 0, 1},
 PlotStyle -> {
 {Thickness[1/100], RGBColor[0.000, 1.000, 0.196], Dashing[{}]},
 {Thickness[1/120], RGBColor[0, 0, 1], Dashing[{}]}
 }, AspectRatio->1.0
]
Plot[EMP[n, x], {x, 0, 1},
 PlotStyle ->
 RGBColor[1.000, 0.032, 0.948],
 AspectRatio->1.0
]
Mathematica Code for Figures 9-14:

<< Statistics'ContinuousDistributions'
<< Statistics'DiscreteDistributions'
<< Statistics'DescriptiveStatistics'
gdist := NormalDistribution[0, 1]
bdist := BernoulliDistribution[.5]
PartialSums[n_Integer] := {
 xg1 = Table[Random[gdist], {n}];
 sg1 = FoldList[Plus, 0, xg1]/Sqrt[n];
 xg2 = Table[Random[bdist] - .5, {n}];
 sg2 = FoldList[Plus, 0, xg2]/Sqrt[n];
 zz = Table[k, {k, 0, n}]*(1/n) // N;
 dd = Table[1, {k, 0, n}]*(1/n)}
PartialSums[1000];
xg1;
xg2;
sg1;
sg2;
J1 = Transpose[{zz, sg1}];
J2 = Transpose[{zz, sg2}];
ListPlot[J1, PlotJoined -> True]
ListPlot[J2, PlotJoined -> True]