1 Existence of UMPs in light of a changing significance level

This problem comes tweaked from *Testing Statistical Hypotheses 3rd ed.* by Lehmann and Romano.

Let P_0, P_1, and P_2 be probability mass functions assigning to the integers 1, \ldots, 6 the following probabilities:

<table>
<thead>
<tr>
<th>X</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_0(X=x)$</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.93</td>
</tr>
<tr>
<td>$P_1(X=x)$</td>
<td>0.05</td>
<td>0.06</td>
<td>0.08</td>
<td>0.02</td>
<td>0.01</td>
<td>0.78</td>
</tr>
<tr>
<td>$P_2(X=x)$</td>
<td>0.08</td>
<td>0.05</td>
<td>0.06</td>
<td>0.00</td>
<td>0.02</td>
<td>0.79</td>
</tr>
</tbody>
</table>

We’re going to work to determine whether or not there exists uniformly most powerful level-\(\alpha\) tests of the form

$\text{Test}_0 \rightarrow H_0 : P = P_0 \text{ vs } H_1 : P \neq P_0$

for (i) $\alpha = 0$, (ii) $\alpha = 0.04$, and (iv) $\alpha = 0.06$.

(a) *Write down what you think it means to have a uniformly most powerful test. Check if your definition agrees with others in your group.*

A uniformly most powerful test is a hypothesis test which has the greatest power among all possible tests of a given size α. For composite tests, it must be simultaneously most powerful over all simple/point alternative hypotheses that compose the composite alternative hypothesis.
(b) Draw two plots corresponding to the likelihood ratios that you would use if you were performing the point alternative tests
\[\text{Test}_1 \rightarrow H_0 : P = P_0 \ \text{vs} \ \text{H}_1 : P = P_1 \ \text{and} \ \text{Test}_2 \rightarrow H_0 : P = P_0 \ \text{vs} \ \text{H}_1 : P = P_2. \]

(c) Which values of the two likelihood ratio plots that you just drew will result in rejection of the null hypothesis for any reasonable test? What values of \(X \) results in these values? Does it make sense in these two tests that we would reject the null if we observed these values of \(X \)?

We’d reject for \(LR = \infty \). This corresponds to \(X=5 \). It makes sense because \(P_0(X = 5) = 0 \) but \(P_1(X = 5) > 0 \) and \(P_2(X = 5) > 0 \). So, if we observe a 5, we can be sure that the true data-generating distribution is not \(P_0 \).

(d) Consider \(\alpha = 0 \). Define the critical regions (in terms of values of \(X \)) for \(\text{Test}_1 \) and \(\text{Test}_2 \). Call the regions \(C_1 \) and \(C_2 \) respectively.

Since we know from the N-P Lemma that our most powerful tests will be of the form: “Reject \(H_0 \) if \(LR_{1/0} = L_{\text{alt}}(X = x)/L_{\text{null}}(X = x) > K \)”, we must add points to our critical region in order of the size of the likelihoods. So, we first add \(X = 5 \) to both critical regions. We can calculate the probability of type I error \((P\text{type I error}) = P_0(X \in C) = P_0(X = 5) = 0 \), and it is still zero, so we can keep 5 in the critical regions. This is equivalent to setting \(K = 10 \), or any number larger than 4.

Next, for \(\text{Test}_1 \), we would have to add \(X = 3 \) next, and for \(\text{Test}_2 \) we would add \(X = 1 \). But, in both cases the probability of type I error will now be 0.02, so we can’t keep either of these values in the critical regions because we’ve specified that the probability of type I error must be less than or equal to \(\alpha = 0 \). So,

\[C_{1,\alpha=0} = \{5\} \]
\[C_{2,\alpha=0} = \{5\} \]
(e) **Does a level-$\alpha = 0$ test UMP test exist for T_{0}? If yes, what is the test and what power does it have? If no, why not?**

We do have a UMP test in this situation. It says reject if $X = 5$ (or if $LR = \infty$).

We know that T_{1} and T_{2} are both most powerful from the N-P lemma, and since they’re the same test, regardless of which alternative we use, we have a UMP test for T_{0}.

The power needs to be calculated under a specific alternative. $Power_1 = P_{1}(\text{reject}H_0) = P_{1}(X = 5) = 0.01$. Similarly $Power_2 = 0.02$.

(f) **Repeat parts (d) and (e) for $\alpha = 0.04$**

\[
C_{1,0.04} = \{5, 3, 2\} \\
C_{2,0.04} = \{5, 1, 3\}
\]

Now we don’t have a UMP! If we wanted to use a most powerful test, it would depend on which alternative we wanted to test.

(g) **Repeat parts (d) and (e) for $\alpha = 0.06$**

\[
C_{1,0.04} = \{5, 3, 2, 1\} \\
C_{2,0.04} = \{5, 1, 3, 2\}
\]

We again have a most powerful test!! We reject if our observation is a 1, 2, 3, or 5. Now $Power_1 = 0.2$, and $Power_2 = 0.21$.