Completeness and Basu’s theorem

Definition: Let T be a statistic. It is complete if for all bounded functions g we have $E_g(T) = 0 \iff g = 0$ a.s.

Note: Completeness is a property of the distribution of T, rather than of the statistic itself.

Example: Let X follow a natural exponential family with $\text{int}(\mathcal{F})$ non-empty. Recall that the density of the natural sufficient statistic $T(X)$ is of the form $f_T(t;\theta) = a(\theta)b(t)\exp(\theta t)$

Assume that $\int g(t)a(\theta)b(t)\exp(\theta t)dt = 0$. Define $d\theta(t) = g^*(t)b(t)dt$ where $g^*(t) = \max\{\pm g(t), 0\}$. Then $\int \exp(\theta t)d\theta(t) = \int \exp(\theta t)d\theta^*(t)$, so by the uniqueness theorem for Laplace transforms $\theta^* = \theta$, whence $g(t) = -g(t)$ so $g(t) = 0$.

Definition: A statistic U is conditionally ancillary given a statistic V if $\mathcal{L}(U|V)$ is free of θ.

Example: If $U = X$ then V is sufficient, while if V is constant then U is ancillary.

Theorem 1.2: If V is complete, there are no non-trivial conditionally ancillary statistics given V.

Proof: Let A be a set defined in terms of U. Compute

$\int P(A|V = v)\mathbb{1}_A(v)f_U(v;\theta)dv = E_{\theta}(P(A|V = v))P_U(A) = P_U(A)P_U(A) = 0$

By completeness $P(A|V) = \mathbb{1}_A$ a.s., so U must be a constant a.s.

Theorem 1.3: Let T, U, V be statistics. Suppose that (T, V) is sufficient, and that U is conditionally ancillary, given V. If the distribution of (T, V) is complete, then T and U are conditionally independent, given V.

Corollary (Basu’s theorem): Suppose T is sufficient, and U is ancillary. Then if T is complete, T and U are independent.

Proof: $\int P(U \square u | T = t, V = v)P(U \square u | V = v)f_{T,V}(t, v; \theta)dtdv$

$= E_{\theta}P(U \square u | T, V)E_{\theta}P(U \square u | V) = P_{U}(U \square u)P_{U}(U \square u) = 0$

so by the completeness the conditional distribution of U given (T, V) is the same as the conditional distribution of U given V.