Homework 3
Due January 28

1. (a) Let \(f_{X,Y}(x,y;q) = \exp(-qx + y/q), x, y > 0 \). Based on a sample of size \(n \) find a sufficient statistic for \(q \), the mle for \(q \), and the Fisher information about \(q \) in the sample.

(b) Find the density for the mle, and determine how much information is lost by observing only the mle (rather than the entire sample).

(c) Let \(U = \sqrt[4]{X_i Y_i} \). Show that \(U \) is ancillary for \(q \). For extra credit, determine the density of \(U \).

2. Let \(X_1, \ldots, X_n \) be iid exponential random variables with mean \(q \).

 (a) Assume that the sum of the observations is 20. Using \(\frac{\hat{q} - q}{\sqrt{\hat{J}_4}} \) as an approximately standard normal pivot, derive an approximate confidence interval for \(q \).

 (b) Let \(\hat{q} = x^{1/3} \). Construct an approximate confidence interval for \(q \) by using the asymptotic pivot \(\frac{\hat{q} - q}{\sqrt{\hat{J}_4(q)}} \) where \(\hat{J}_4 \) is the observed information in the new parametrization.

 (c) Find exact upper and lower limits for a confidence interval for \(q \), and compare to the approximations in (a) and (b).

3. Consider two experiments, \(E_1 \) and \(E_2 \), consisting of observing \(X_1 \) and \(X_2 \), respectively, each with possible values \(\{1,2,3\} \) and parameter values \(\{0,1\} \). The densities are

 \[
 \begin{align*}
 X_1: & \quad \begin{array}{ccc}
 & 1 & 2 & 3 \\
 f_0^1(x_1) & .90 & .05 & .05 \\
 f_1^1(x_1) & .09 & .055 & .855 \\
 \end{array} \\
 \end{align*}
 \]

 \[
 \begin{align*}
 X_2: & \quad \begin{array}{ccc}
 & 1 & 2 & 3 \\
 f_0^2(x_2) & .26 & .73 & .01 \\
 f_1^2(x_2) & .026 & .803 & .171 \\
 \end{array} \\
 \end{align*}
 \]

 (a) Show that the test accepting \(q = 0 \) when \(x = 1 \) is most powerful in both experiments, and compute the type I and type II error probabilities for this test.

 (b) Show that the likelihood principle deems the experiments indistinguishable.

 (c) Which experiment would you rather perform?