Sins of Commission vs. Sins of Omission: How Confounding Can be Induced by Including 'Irrelevant' Covariates in Regression

Thomas Richardson
10 April 2002

CSSS Seminar
Overview of Talk

• Q: which variables should be regressed on if the causal structure is known, and I want to be able to interpret the coefficients causally?

• Two fallacious ‘Rules of thumb’ in common use.

• Examination of the fallacies.

• Valid solution based on graphical methods

• Quantification of the error in the rules of thumb

• Conclusion: distinction between endogenous and exogenous variables is too crude.
Hypothesized Model:

\[Y_i = a_0 + a_X X_i + a_Z Z_i + \epsilon_{Y_i} \]

This is a *structural equation*, i.e. it describes the way in which the variable \(Y \) is causally determined by the variables \(X \) and \(Z \).

This ‘equation’ might be better written as:

\[Y_i \leftarrow a_0 + a_X X_i + a_Z Z_i + \epsilon_{Y_i} \]

since it is better viewed as an assignment, rather than an equation.

Throughout the talk \(a_0, a_X \) and \(a_Z \) *will denote these structural coefficients.*
Suppose that we have a sample of data on X, Y and Z and we are interested in the coefficient a_X.

Suppose further that

$$E(Y \mid X, Z) = \beta_0 + \beta_X X + \beta_Z Z$$

$$E(Y \mid X) = \gamma_0 + \gamma_X X$$

The following questions arise:

1. Under what conditions will $\beta_X = a_X$, so that the coefficient of X in the regression of Y on X and Z will be an unbiased estimator of a_X?

2. Under what conditions will $\gamma_X = a_X$, so that the coefficient of X in the regression of Y on X alone will be an unbiased estimator of a_X?
Fallacious Rule of Thumb (I)

Mirer’s “Rule”:
Whenever, $\gamma_X = a_X$ then $\beta_X = a_X$.

Equivalently, if the coefficient from the regression of Y on X alone is an unbiased estimator of a_X, then so is the coefficient from the regression of Y on X and Z.

Put briefly: adding a new variable into a regression equation never introduces bias in any of the other coefficients, viewed as estimators of structural coefficients.

‘*Spurious’ dependence may be removed but will not be introduced by adding variables to a regression.*

(It is usually implicit that Z precedes X and Y.)
Fallacy in Mirer’s “Rule”

We assume that

\[a_X = \gamma_X = \frac{\text{cov}(X, Y)}{V(X)} \]

while

\[\beta_X = \frac{\text{cov}(X, Y \mid Z)}{V(X \mid Z)} \]

where

\[\text{cov}(X, Y \mid Z) = \text{cov}(X, Y) - \frac{\text{cov}(X, Z) \text{cov}(Y, Z)}{V(Z)} \]
Consider the following structure:

\[l_1 \quad l_2 \]
\[\quad \quad z \quad \]
\[\quad \quad \quad \quad y \]
\[x \quad \]

Where \(L_1 \) and \(L_2 \) can be thought of as independent unobserved variables.

Here \(\text{cov}(X, Y) = 0 \) hence \(\alpha_X = \gamma_X = 0 \).

However, \(\text{cov}(X, Z) \neq 0 \neq \text{cov}(Y, Z) \), hence \(\beta_X \neq 0 \), so \(\beta_X \neq \gamma_X \).
Example from WWII Pilot Selection

\[\text{test taking ability} (l_1) \quad \text{mechanical aptitude} (l_2) \]

\[\text{vocabulary score} (x) \quad \text{mechanical comprehension score} (z) \quad \text{flight simulator score} (y) \]

(apologies to Bob Abbott)
Possible source of the error

Compare Mirer equations (13.15) and (13.17)

\[Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i \]
\[Y_i = \gamma_0 + \gamma_1 X_{1i} + \nu_i \]

Mixer states (p.293)

... when (13.17) is the correct model, (13.15) could be considered “correct” if the restriction that \(\beta_2 = 0 \) is added and somehow taken into account during estimation.

but for (13.15) to be correctly specified (w.r.t. both \(X_1 \) and \(X_2 \)) we also require,

\[E(u \mid X_1, X_2) = 0 \]

This is certainly not implied by the condition

\[E(v \mid X_1) = 0 \]

which is all that we require in order for (13.17) to be correctly specified.
Valid conditions

Answer to Q.1: if, in the population,
\[E(\varepsilon_Y \mid X, Z) = \delta_0 + \delta_Z Z, \]
i.e. it is not a function of \(X \) then
\[
E(Y \mid X, Z) = E(a_0 + a_X X + a_Z Z + \varepsilon_Y \mid X, Z) \\
= E(a_0 + a_X X + a_Z Z \mid X, Z) + \delta_0 + \delta_Z Z \\
= (a_0 + \delta_0) + a_X X + (a_Z + \delta_Z) Z
\]
so in this case \(\beta_X = a_X \).

Answer to Q.2: if in the population
\[E(a_Z Z + \varepsilon_Y \mid X) = \phi_0 \]
i.e. it is not a function of \(X \), then
\[
E(Y \mid X) = E(a_0 + a_X X + a_Z Z + \varepsilon_Y \mid X) \\
= E(a_0 + a_X X \mid X) + \phi_0 \\
= (a_0 + \phi_0) + a_X X
\]
so in this case \(\gamma_X = a_X \)
Simple case (I)

Consider the following graph, describing causal relations:

We have

\[E(\epsilon_Y \mid X, Z) = \text{constant}_1, \]

since there are no unmeasured variables confounding \(Y \) and \(Z \), or \(Y \) and \(X \).

Note that

\[E(\alpha_Z Z + \epsilon_Y \mid X) = \text{constant}_2 + \alpha_Z E(Z \mid X) \]

which in general will depend on \(X \). Hence \(Z \) must be included.
Simple case (2)

\[E(\epsilon_Y \mid X, Z) = \text{constant}_1, \]

since there are no unmeasured variables confounding \(Y \) and \(Z \), or \(Y \) and \(X \).

Note that

\[
E(a_Z Z + \epsilon_Y \mid X) = \text{constant}_2 + a_Z E(Z \mid X)
\]
\[
= \text{constant}_2 + a_Z E(Z)
\]
\[
= \text{constant}_3
\]

which does not depend on \(X \).

Hence regressing \(Y \) on \(X \) alone also yields an unbiased estimate of \(a_X \).
Case where Mirer’s rule fails

In this case, $E(\epsilon_Y \mid X, Z)$ will be a function of X (and Z), hence the coefficient of X in the regression of Y and on X and Z will not yield an unbiased estimator of a_X.

However, $E(\epsilon_Y \mid X) = \text{constant}_1$. Hence the coefficient of X in the regression of Y on X alone will yield an unbiased estimator of a_X.

13
Question: In what general circumstances will a given set of covariates in a regression be such that the coefficient of \(X \) is an unbiased estimate of \(a_X \)?

In particular, can we describe these assumptions in causal terms?

i.e. given a hypothesized causal structure, can we identify a regression which will allow us to estimate a given causal coefficient?
Fallacious Rule of Thumb (II)

‘Confounding path’ rule

According to this rule, a set of variables is sufficient to control confounding so long as it contains at least one variable on any path of the form:

- $X \leftarrow \cdots \leftarrow \cdots \rightarrow Y$, or

- $X \rightarrow \cdots \rightarrow Y$.

(We assume that X occurs prior to Y so $Y \rightarrow \cdots \rightarrow X$ does not occur in the graph.)
Example showing the rule is fallacious

According to the ‘rule’ conditioning on Z is sufficient to control confounding between X and Y. However, as we have seen in the case of Mirer’s rule, this is not correct.
Source of the fallacy

The fallacy arises as follows:

If there were no ‘confounding paths’ then regressing Y on X alone would give an unbiased estimate of a_X.

Conditioning on a variable on a confounding variable does block that path.

However, as we saw with Mirer such conditioning, can induce additional confounding paths, that do not take the form described in the rule.

Consequently the rule describes a *necessary*, but *not sufficient* condition for a set to control confounding.
Consequences for inferences about ‘mediators’
Correct rule (1)

A non-endpoint vertex W on a path is a *collider on the path* if the edges preceding and succeeding W on the path have an arrowhead at W, i.e. $\rightarrow W \leftarrow$,

A non-endpoint vertex W on a path which is not a collider is a *non-collider on the path*, i.e. $\leftarrow W \rightarrow$, $\leftarrow W \leftarrow$, $\rightarrow W \rightarrow$.
Correct rule (2)

A path between vertices X and Y in a graph G is said to be \textit{d-connecting given a set Z} (possibly empty) if

(i) every non-collider V on the path is not in Z, and

(ii) every collider V on the path is either in Z or there is a directed path $V \to \cdots \to Z_i$ where Z_i is in Z.

If there is no path d-connecting X and Y given Z, then X and Y are said to be \textit{d-separated given Z}.
Correct rule (3)

The coefficient of X when regressing Y on X together with the variables in a set Z ($X, Y \notin Z$) will yield an unbiased estimate of the causal effect α_X if:

(a) X and Y are d-separated by Z in the graph G' formed by removing the $X \rightarrow Y$ edge from G (if such an edge is present in G).

(b) There is no vertex Z in Z such that $Y \rightarrow \cdots \rightarrow Z$.
Sins of Omission

In each of these graphs failure to include Z in the regression, will make the coefficient of X, a biased estimator of a_X. Including Z will remove the bias (or in the last case including either of Z_1 or Z_2).
Sins of Commission

In each of these graphs including Z in the regression, will make the coefficient of X, a biased estimator of a_X. Regressing Y on X alone will yield an unbiased estimator.
Time for a new idea

\[l_1 \rightarrow z_1 \rightarrow z_2 \rightarrow y \]

\[x \rightarrow y \]

There is no regression model which will estimate \(a_X \) in these two cases. However, \(a_X \) may still be estimated by other methods.
Abandon Hope!

In each of these graphs the causal effect a_X cannot be identified without either making additional assumptions, or measuring additional variables.