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Summary. The Hardy–Weinberg law is among the most important principles in the study of biological
systems (Crow, 1988, Genetics 119, 473–476). Given its importance, many tests have been devised to
determine whether a finite population follows Hardy–Weinberg proportions. Because asymptotic tests can
fail, Guo and Thompson (1992, Biometrics 48, 361–372) developed an exact test; unfortunately, the Monte
Carlo method they proposed to evaluate their test has a running time that grows linearly in the size of the
population N. Here, we propose a new algorithm whose expected running time is linear in the size of the
table produced, and completely independent of N. In practice, this new algorithm can be considerably faster
than the original method.
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1. Hardy–Weinberg Proportions
The Hardy–Weinberg law is a cornerstone of population gene-
tics, and it is very important to be able to test whether or not
a given population conforms with this law (see e.g., Galbusera
et al., 2000). Suppose that the population mates randomly
and that there is no selection or mutation affecting the gene
frequencies. Under these conditions, the Hardy–Weinberg law
states that the frequency of genotypes will remain constant
across generations, and gives a formula for these frequencies.

These are limiting frequencies that apply to infinite pop-
ulations. For finite populations, the question of interest is
whether or not the finite population is a random subset of a
population that follows the Hardy–Weinberg law. Such a ran-
dom subset has a distribution known as Hardy–Weinberg pro-
portions (HWP). Testing whether a finite population obeys
HWP is an important first step in an analysis of the pop-
ulation. For example, Galbusera et al. (2000) studied sub-
populations of the endangered Taita thrush. Their first step
was to determine whether migration was occurring between
the subpopulations by testing each to determine whether the
population was in HWP.

Paterson et al. (1998) examined various alleles in a popu-
lation of Soay sheep in order to determine which alleles were
selected for by the presence of a parasite. We reanalyze part
of their data in Example 2 below.

Exact p-values for testing whether a population is in HWP
goes back to Levene (1949). The idea is to look at a test statis-
tic such as the probability of the allele frequencies observed in
the data. Then the probability that a table drawn at random
from HWP has a test statistic value lower than that of the
data is an exact p-value.

Let N be the size of the finite population. The set of possible
allele frequencies for the population is exponentially large in

N. An exponential time network algorithm for determining
this exact p-value deterministically exists (Aoki, 2003), but
is only useful for values of N that are small (the example
considered in the paper has N = 30).

For larger values of N, the only efficient means for test-
ing whether a finite population is drawn from HWP is the
Monte Carlo simulation. Guo and Thompson (1992) proposed
two such Monte Carlo methods. The first was a direct Monte
Carlo method that unfortunately only ran in pseudopolyno-
mial time, which is discussed in Section 1.1. This slow running
time prevented Guo and Thompson from using this method to
analyze one of their examples (Example 1 considered below).
The second approach was a Markov chain method, where the
mixing time of the chain was guessed at but never fully deter-
mined. Improvements on their method concentrated on speed-
ing up the Markov chain technique (Lazzeroni and Lange,
1997), but the direct Monte Carlo method remained in its
original form.

In this article, we present a new Monte Carlo technique for
this problem which is an improvement on the direct Monte
Carlo method of Guo and Thompson. It is a direct method,
not based on Markov chains, and is the first true linear time
algorithm for generating random variates exactly from the de-
sired distribution in the sense that the time needed to run
the algorithm is linear in the size of the table produced.
In addition, this method is able to handle the constraint
of one structural zero in the problem, which is discussed in
Section 3.3. Furthermore, it is fast in practice as well as the-
ory; we later present a relatively small data set where our
method is 17 times as fast as previous approaches.

To state the Hardy–Weinberg law precisely, consider a par-
ticular autosomal locus that is always one of m different
alleles in the population. Suppose that allele Ai occurs with
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frequency pi for i from 1 to m. Then the Hardy–Weinberg
law states that allele combination AiAj (where i < j) occurs
with frequency 2pipj in the population, and AiAi occurs with
frequency p2

i . These frequencies are limiting behavior for a
large population. Now consider a finite population of N indi-
viduals and a particular autosomal locus. Since the locus is
autosomal, the genetics of the population can be described
completely by writing out the 2N allele types found in the N
members of the population. We will say that the population
is in Hardy–Weinberg equilibrium or exhibits HWP if this or-
dering is equally likely to be any permutation of the 2N alleles
found in the population.

For our purposes, two individuals possessing the same allele
combination at the locus of interest are indistinguishable from
one another, and so we are actually only interested in the
observed frequency of each pair of alleles.

Suppose that allele Ai occurs fi times in the population.
This is fixed, as any permutation of the alleles does not change
the fi . Let fji be the number of times allele combination
Aj Ai (i < j) occurs. Then for all i and j from 1 to m:

fi = 2fii +
∑

j>i

fji +
∑

j<i

fij . (1)

Restricting ourselves to frequencies that meet the linear
constraints in (1), the distribution of frequencies becomes
(Levene, 1949):

π(f) =
N !

(2N)!

(
∏

i≤j

1

fji !

)(
m∏

i=1

fi!

)
2

∑
i<j

fji . (2)

Various tests exist to determine whether a particular data
set follows HWP. Large sample goodness-of-fit tests such as
Pearson’s χ2 (Li, 1955) rely on asymptotic results that are not
always valid for the data sets of the type we consider. Guo and
Thompson (1992) proposed an exact p-value test; evaluating
their p-value requires the ability to generate samples from the
distribution π in (2). It is this problem of generating random
variates in order to determine exact p-values that will be our
focus.

1.1 Slow and Fast Direct Generation of Random Variates
Given that we derived π in (2) from the uniform permutation
on 2N alleles, we can generate a random variate directly from
π by first generating a random permutation of the 2N alleles
and then just counting the frequencies fij directly (Guo and
Thompson, 1992). We will refer to this as the naive Monte
Carlo method for this problem.

Generation of the permutation of 2N elements requires 2N
space and 2N draws of random uniforms. We are only inter-
ested in m choose 2 or Θ(m2) different frequencies, but N
might be exponentially large in the size of the problem in-
stance. The problem requires O(m lnN) bits to write down
the allele frequencies when N is encoded using binary no-
tation for numbers, and so O(m2 lnN) bits are required to
write out the final random table. Hence the input and out-
put sizes are O(m2 lnN). The running time of the Guo and
Thompson algorithm is N, and so technically it is an expo-
nential time algorithm since N can be exponentially large
in m2 lnN .

In unary notation, the integer a is written as a sequence of
1’s of length a. For example, the number 3 is 111 in unary.
When the numbers in the input and output are encoded in
unary, the input size and output size become O(m2N). When
the running time of an algorithm is polynomial, when the
problem is encoded in unary, the algorithm is called pseu-
dopolynomial (Wolsey and Nemhauser, 1999).

This pseudopolynomial running time for the original Monte
Carlo algorithm has led various authors to consider Markov
chains. Unfortunately, the Markov chain mixing time used in
papers such as Guo and Thompson (1992) has mixing time
Θ(N ln N), and so is slower than directly drawing the per-
mutation in the first place. Yuan and Bonney (2003) develop
a better Markov chain, but do not fully analyze the mixing
time. The Markov chain algorithms use Θ(m2) space, com-
pared to the Θ(N) space used by the naive Monte Carlo
method.

In Section 3, we present two true linear time algorithms
that only require Θ(m2) time and space to generate a ran-
dom variate from the desired distribution, with no dependence
on N. We compare our algorithms to the naive Monte Carlo
method and show that it is much faster in practice as well as
theory.

2. The Problems
In this section, we introduce several data sets that are typical
for this field, along with the exact p-value test of Guo and
Thompson (1992).

Example 1. The data in Figure 1 were extracted (Guo and
Thompson, 1992) from the Rhesus data in Cavalli-Sforza and
Bodmer (1971).

For this table f , π(f) = 10−54.7. The exact p-value of Guo and
Thompson (1992) works by computing the probability that a
random table chosen from π has probability at most π(f).
More precisely, let F = (f 1, . . . , fm) and let

SF =

{
g = (gij ) : 2gii +

∑

j>i

gji +
∑

j<i

gij = fi ∀i

}
. (3)

Then the exact p-value is just

p =
∑

g∈SF:π(g)≤π(f)

π(g). (4)

1236
120 3
18 0 0
982 55 7 249
32 1 0 12 0

2582 132 20 1162 29 1312
6 0 0 4 0 4 0
2 0 0 0 0 0 0 0

115 5 2 53 1 149 0 0 4

Figure 1. Genotype data at Rhesus locus (Cavalli-Sforza
and Bodmer, 1971).
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Allele 205 213 257 265 267 269 276 287
Observed 506 271 566 319 378 3 337 18

Figure 2. OLADRB gene in Soay sheep.

Guo and Thompson (1992) analyzed these data using both
χ2 and their exact p-value technique. The exact p-value was
approximated by Monte Carlo methods, hence the speed of
this analysis is directly proportional to the speed at which
random variates can be generated.

Example 2. In Paterson et al. (1998), a population of Soay
sheep is studied to determine how resistance to a particular
parasite affected sheep survival. The resistance to parasite
levels was believed to arise from an interaction of three of
the five loci studied. The first step in such a determination
was to show that individually, five genetic loci of interest were
in Hardy–Weinberg equilibrium. This step was necessary to
show that none of the loci of interest was affecting resistance
to the parasite on their own; the effect had to arise from
linkages between the genes.

We did not have access to the complete initial data, instead
what was reported in Paterson et al. (1998) were the genetic
frequencies for a particular genetic marker, OLADRB (Figure
2).

Our goal for this example was not to reanalyze the data
of Paterson et al. (1998), but rather to examine how quickly
our method worked on this particular example versus the Guo
and Thompson method they used in their analysis.

Example 3. These genotype data for Gaucher disease come
from le Coutre et al. (1997). In Beutler et al. (1995), it is
stated that the genotype pair IVS2+1/IVS2+1 is lethal, and
therefore constitutes a structural zero in the triangular table
of genotypes (structural zeros are discussed further in Section
3.3). The genotype data are given in Figure 3, where the dash
(-) indicates the presence of a structural zero.

3. Fast Generation of Random Variates
We now present an algorithm for sampling from Hardy–
Weinberg proportions using m(m + 1)/2 draws from vari-
ous hypergeometric distributions. A hypergeometric draw can
be accomplished using 4.2 (in expectation) uniform random
variables, making this algorithm much faster than previous
methods (Hörmann, 1994).

0
5 2
2 0 0
1 0 0 −
0 0 0 0 0
0 1 0 0 0 0
10 2 0 0 1 0 1

Figure 3. Gaucher disease data (le Coutre et al., 1997).

Guo and Thompson (1992) performed a Monte Carlo study
on the Rhesus example of the previous section, where N =
8297 and m = 7, using generation of the entire permutation.
This method requires 8192 draws of uniform random variables
to generate one permutation that gives one table of frequen-
cies, whereas our method takes only 28 hypergeometric draws
(or roughly 75 uniform draws) for a complete set of frequen-
cies, a reduction in the number of uniforms generated by a
factor of 100.

Consider writing the frequencies in a lower triangular ma-
trix. Our method fills in the matrix one column at a time
from left to right. For a given column, we first tackle a di-
agonal entry such as f11. This will require two draws of a
hypergeometric. Then we fill in each element in the column
below, each with a single hypergeometric. Once a column is
filled, the numbers for the remaining alleles can be updated
accordingly. The process then repeats until we have entered
figures in all columns.

3.1 Hypergeometric Random Variables
Several acceptance/rejection methods exist for generating
from the hypergeometric distribution in constant time. For
instance, Kachitvichyanukul and Schmeiser (1985) use a sim-
ple envelope function, Stadlober (1990) uses a ratio of uni-
forms, and Stadlober and Zechner (1999) utilize patchwork
rejection. More generally, the hypergeometric distribution is
log concave, that is, for X a hypergeometric random variable,
P (X = k)2 ≥ P (X = k − 1)P (X = k + 1) for all k. This means
that constant time results in Devroye (1987) and Hörmann
(1994) for generating variates from discrete log-concave dis-
tributions can be used.

In particular, Theorem 2 of Hörmann (1994) indicates that
at most 4.2 uniform variates are needed (on average) for a
single hypergeometric draw.

A hypergeometric random variable can be viewed in the
following fashion. Consider t balls dropped uniformly at ran-
dom into s = r + g slots (each slot holding at most 1 ball)
where r of the slots are colored red, and g of the slots are col-
ored green. Then, if X is the number of balls that fall in red
slots, then we say that X has a hypergeometric distribution
with parameters s, r, and t. We write X ∼ HG(s, r, t).

This view of hypergeometric random variables relates to
the HWP problem as follows. Suppose that the alleles of type
1 are our balls. The slots are the 2N possible places that the
alleles can be placed. Each of the N members of the population
is assigned two slots corresponding to the two alleles for that
member. Color the set of first slots assigned to each person
red, and the set of second slots assigned to each person green.

Now for a person to have allele type A1A1, both the red and
the green slots assigned to that person must be occupied by
balls. Consider a two-step procedure. First, randomly decide
how many of the allele type 1 balls fall in red slots. This
number X will have a hypergeometric distribution, say X ∼
HG(2N , N , f 1). Now give second slots where the first slots
are occupied by a ball the color yellow. The remaining second
slots are colored blue. There are X yellow slots, and N − X
blue slots. Dump the remaining f 1 − X balls into these slots.
Now the number of members of the population (call it Y )
that have received A1A1 allele type is again hypergeometric,
so Y |X ∼ HG(N , X, f 1 − X). This number Y is the entry
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Figure 4. Choosing f11.

f11 in the table. This is illustrated in Figure 4, where N = 6,
f 1 = 6, X = 3, and Y = 2.

Now given f11, consider the number of members of the pop-
ulation that receive A1A2 alleles. The number of allele 1 balls
that only occupy one of a member’s two slots will be f 1 −
2f 11. Color empty slots that are next to such an allele 1 ball
yellow. Now f2 allele 2 balls are dropped randomly into the
2N − f 1 slots that remain, of which f 1 − 2f 11 are colored
yellow. If an allele 2 ball lands in a yellow slot, that member
has genotype A1A2. Hence, the number of such people has a
hypergeometric distribution, HG(2N − f 1, f 1 − 2f 11, f 2).

In the same fashion, f 13, f 14, . . . , f 1m can be chosen until
the contents of the entire column are filled in. This idea is the
heart of an induction that makes the above argument formal,
and allows the completion of a column.

3.2 Column by Column
Once the first column is filled in, the next column can be
tackled in a similar fashion, and the algorithm proceeds by
filling in the columns of the table one at a time. We now
verify that this procedure is valid. Suppose that we are trying
to generate a random permutation of the alleles conditioned
on the first column of frequencies being fixed. That is, the
counts f11 through f 1m are known.

Such a permutation can be constructed as follows. For each
member with allele A1Aj , j )= 1, randomly permute the geno-
type so that it is either A1Aj or Aj A1. Now take each of
the f 1j members with genotype A1Aj or Aj A1 and randomly
place them among the N members of the population. Finally,
for the remaining alleles, randomly place them among the
2(N − f 11 − · · · − f 1m) slots that remain.

Any permutation satisfying f11 through f 1m can be con-
structed in this fashion, and each of these permutations will
have probability

1
m∏

j=2

2f1j

× N !
m∏

j=1

f1j !

× 1

{2(N − f11 − · · · − f1m)!} (5)

of occurring. This is constant when conditioned on f11 through
f 1m, and so this is a valid procedure for generating permuta-
tions uniformly at random conditioned on the values in the
first column. Again to formally complete the argument, an
induction on the column number is necessary.

The procedure is as follows: first fill in the first column of
the matrix. Then update the numbers of alleles f 2 through

fm by subtracting off f12 through f 2m, respectively. Finally,
update N by subtracting f 11 + · · ·+ f 1m. The result is a new
problem that can be solved recursively. Since the base case
where we have no columns is easy to sample from, it is an
easy proof via induction that this procedure generates directly
from π.

Generating from Hardy–Weinberg Proportions
Input: N , f 1, . . . , fm
1. For i from 1 to m
2. Choose ai ← HG(2N , N , fi ), fii ← HG(N , ai , fi − ai )
3. Let N ← N − (fi − fii ), fi ← fi − 2 fii , b ← 2N − fi
4. For j from i + 1 to m
5. Choose fji ← HG(b, fi , fj )
6. Let b ← b − fj , fj ← fj − fij , fi ← fi − fij

3.3 Structural Zeros
The structure of the data can contain additional constraints
beyond (1). For instance, a particular allele type AiAi might
be lethal to the organism born with it. Example 3 is an ex-
ample of this type of data set.

Such a lethal combination implies that the data fii are
forced to be 0. This constraint is referred to as a structural
zero of the problem. Selection is occurring here, therefore, the
population does not satisfy Hardy–Weinberg, and cannot be
expected to follow HWP. Instead, it is reasonable in this case
to test whether the population follows HWP conditioned on
the fii entry being zero. Such a conditional distribution exists
as long as

∑
j )=i fj > fi.

The gene labels can be permuted so that f11 is the entry con-
strained to be 0. To sample from permutations where each of
the A1 alleles reside in different members of the population,
we simply begin the algorithm with f 11 = 0 for the choice
of first diagonal entry and proceed as before. Since the algo-
rithm proceeds by filling in the entries one at a time condi-
tioned on the entries previously chosen, this procedure auto-
matically returns a table drawn from the correct conditional
distribution.

3.4 Running Time
The number of hypergeometric draws employed by our
method is m choose 2 plus m, or (m2 + m)/2. Given that we
can take a hypergeometric draw on average using 4.2 uniform
draws (Hörmann, 1994), we immediately have the following.

Theorem 1: An upper bound on the expected number of uni-
forms used by our method is 2.1(m2 + m).

4. Empirical Results
Guo and Thompson (1992) were unable to use their exact
method on Example 1 because it took too much time. Instead,
they used a Markov chain method where they did not fully
analyze the mixing time. Advances in computing speed allow
us to run Guo and Thompson’s original method alongside our
own and compare their running times. Also, we created artifi-
cial data sets by multiplying the data in each of our examples
by a factor of 100. These artificial data sets illustrate nicely
how the Guo and Thompson method running time depends
on data size, while ours do not.

The running times for p-values in Table 1 are the times
needed to take 106 samples (except for the Example 1 times
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Table 1. Empirical running times.

100 data set, where the time is an estimate of how long 106

samples would take based on the first 1000 samples). Note
that the exact p-values found by each method are the same:
both methods give the same answer, what is different is just
how quickly the estimate for the p-value is generated. The con-
fidence intervals for the p-values are presented at the 99.9%
confidence level.

For Example 1, the number of uniforms needed to be gen-
erated was significantly less; however, there is fixed overhead
in calling subroutines that made the speed up about 17, less
than expected. With the artificial data set where each entry
is multiplied by 100, the speedup rises to 1400.

In Example 2, the speedup is about 2 for the original prob-
lem, and for Example 3, our method actually takes longer
because N is so small. However, the exact method of Aoki
(2003) was successfully used on a problem where N = 30,
and so Monte Carlo methods need not be used at all when N
is this small. Of course, once each data set is multiplied by
100, our method again becomes faster, showing speedups of
97 and 6, respectively.

5. Conclusions
Both theoretically and in practice, the new algorithm of
Section 3 is the fastest method at present for generating draws
exactly from Hardy–Weinberg proportions, except when the
size of the population is very small, in which case Monte Carlo
methods need not be used at all. The fact that the running
time only depends on the number of alleles and is indepen-
dent of the total population is a sharp improvement over pre-
vious methods whose running time grew linearly in the total
population.
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