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Abstract. Markov chains and sequential importance sampling (SIS) are de-
scribed as two leading sampling methods for Monte Carlo computations in
exact conditional inference on discrete data in contingency tables. Examples
are explained from genotype data analysis, graphical models, and logistic re-
gression. A new Markov chain and implementation of SIS are described for
logistic regression.

1. Introduction

This paper is partly a survey of some recent theory on statistical problems of
discrete data, and partly a description of new results for problems of sparse con-
tingency tables where existing theory is not adequate.

Counts from statistical experiments are put in contingency tables that may be
considered vectors of nonnegative integers. These are typically frequencies of events
from an experiment where two or more outcomes are possible in a series of trials.
Algebraic and geometric theory of lattice points and polytopes become useful when
one wants to make inferences about the statistical model in place during the sam-
pling and the data is multidimensional. One is led to computations over a collec-
tion of tables with certain constraints that are often linear and define a polytope
S0 whose elements correspond to constrained tables of integers where each cell in
a table is a dimension in the space containing the polytope.

The statistical ideas of conditional inference that make polytopes an essential
sample space were developed by Ronald Fisher to deal with two fundamental sta-
tistical issues: to determine if a family of probabilities (a model) could include
the prevailing probability distribution when the family involves several unknown
parameters; and to compute measures of distance from the observed data to the
collection of tables consistent with the model without using asymptotic approxima-
tions. Conditional inference is described in Agresti (1990). The number of lattice
points in the polytope S0 representing tables of interest may be 1020 or larger, and
over this set we will want to compute expectations Eπ(f(n)) for certain functions
f : S0 → R, and distributions π that may be uniform or conditional on sufficient
statistics, often the hypergeometric distribution. Sometimes there are formulas
or ad hoc sampling methods for efficient Monte Carlo computation, but this only
happens for certain distributions π and special polytopes S0. In general it is not
efficient or not possible to list all the elements of S0 for further exact computation.
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All expectations of interest can be computed as accurately as desired with a
random sample from S0 from a known probability distribution that is positive over
all elements of S0. Generating the random sample is the goal. To this end we discuss
two particularly useful methods for sampling from polytopes: Markov chains and
sequential importance sampling (SIS).

Markov chains are usually easy to program and memory efficient and have been
used for Monte Carlo computations for decades. They require a “Markov basis”
to make them irreducible–to run through all tables so time averages approximate
space averages. The basis can be described as a generating set for a toric ideal,
which is one of the fundamental results of Diaconis and Sturmfels (1998). With
an irreducible and aperiodic Markov chain in S0 one has the ergodic theorem that
allows us to approximate expectations with sample averages:

Eπ(f) = lim
m→∞

1
m

m∑

i=1

f(ni)

where ni are random tables with stationary distribution π. The size of m for a good
approximation is usually not clear. Theoretical results on the time to stationarity
are hard to prove and hard to apply. Perfect sampling methods such as coupling-
from-the-past that make unnecessary the analysis of convergence have not yet been
found for most applications of conditional inference.

In some cases the Markov basis is very hard or impossible to compute com-
pletely. Odds-ratio models such as logistic regression are hard cases like this, and
these are the examples we focus on here, beginning in §3. The constraints defining
the polytope are Lawrence liftings, and the generators of the toric ideal are hard
to enumerate and can have high total degree. We show that slightly larger sets
of tables S1, suggested by intuition, saturation, or primary decomposition, may be
much easier to sample, and the set S0 ⊂ S1 can be studied by “conditioning.” This
idea is not new, but designing S1 so it is not much larger than S0 can use new tech-
nology from algebra. Our main new result is Theorem 3.1, which gives an efficient
relaxation of the logistic regression problem that allows easy computations. The
relaxation uses ideas of primary decomposition from work of Diaconis, Eisenbud,
and Sturmfels (1998) and illustrates results of Hosten and Shapiro (2000).

In §4 we describe sequential importance sampling, with specific application to
logistic regression. SIS has proven to be much more efficient than Markov chains
for sampling from the uniform distribution from rectangular tables with fixed row
and column sums. This has been shown in Chen, Diaconis et al. (2003) and in
follow-up work. To run the Markov chain for this application, one increments the
present table with a random increment of the form

±



 + −

− +





and it can be shown that the resulting sequence of tables will visit all tables even-
tually. But the time to stationarity is long compared to the time required by SIS
to go through the cells in sequence, sampling uniformly from an interval of possible
values for each cell computed with up-to-date Fréchet bounds, and keeping track
of weights to measure the variation from the uniform distribution. We make some
informal connections between SIS and commutative algebra that could be further
developed.
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2. Notation and Examples

A family of positive probabilities (µθ)θ∈Rp on nonnegative integer vectors n ∈
Zd

+, whose entries sum to a known sample size n and may have other constraints,
is given by

µθ(n) = h(n)
eθ′A0n

zθ

where A0 is a p×d nonnegative integer matrix, zθ is a normalizing constant, θ ∈ Rp

is a real parameter, and h(n) ≥ 0 may involve multinomial coefficients. The set of
integers will be denoted Z, and the nonnegative integers in dimension d are denoted
Zd

+. The conditional distribution given statistics A0n = t is parameter free:

µθ(n | A0n = t) ∝ h(n),

defined on tables or lattice points n ∈ Zd
+ that satisfy A0n = t and that may also

satisfy a priori constraints that combine into a single constraint matrix A, say

S0 := {n ∈ Zd
+ : An =

[
t
s

]
}.

Our main goal is to sample from S0 according to the conditional probability distri-
bution proportional to h(n), in order to compute expectations for tests of goodness-
of-fit and parameter significance based on the theory of exact conditional inference.

A general method for constructing an irreducible chain was described in Diaconis
and Sturmfels(1998). Suppose

G := {xa1 − xb1 , . . . ,xag − xbg}

is a Gröbner basis of monomial differences for the toric ideal

IA := 〈xn − xm : An = Am〉

in Q[x]. The vector increments represented by the differences of the exponents

MG := {a1 − b1, . . . ,ag − bg}

chosen randomly with random signs will connect all points of the set S0, eventually,
so the process is an irreducible Markov chain. A generating set of binomials is
sufficient for irreducibility (Diaconis and Sturmfels (1998), p. 375) , but anything
less than a generating set could have two or more connected components within
S0, depending on the actual values of the constraints defining the polytope. A
fundamental and useful result of Diaconis, Eisenbud, and Sturmfels (see Sturmfels
(2002), p. 110) is that two tables n and m in the polytope S0 will be connected by
the Markov chain based on moves in some collection C whose corresponding ideal
IC ⊂ IA if the binomial xn − xm ∈ IC . If the collection C is a Gröbner basis,
the path between n and m can be constructed by long division. The theory of
toric ideals, lattice bases, and the connection with Markov chains is explained in
Sturmfels (1996), and Diaconis and Sturmfels (1998). Some aspects of the theory
are in Pistone, Riccomagno, and Wynn (2000). The algebra for Markov chains
can be quite useful for understanding SIS– arguments in §4 will use notions of
square-free lead terms and adjacent minors for establishing implementation details
of SIS.

These Markov chains are similar to reflecting random walks, although tight cor-
ners of the polytope make a precise analogy difficult. Their convergence rates in
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simple cases can be estimated based on eigenvalue computations. The strongest
results for random walks in lattice points are in Diaconis and Saloff-Coste (1998).

Example 2.1 (Genotype Data). Genotype data is a table of counts of unordered
pairs of alleles, like the following experimental data on Gaucher disease from a pa-
per of Le Coutre et al. (1997). It is known that the genotype pair IVS2+1/IVS2+1
is lethal, and therefore constitutes a structural zero in the triangular table of geno-
types (or possibly a missing entry, whose analysis is slightly different, but we will
assume a structural zero). The table rows and columns normally are labelled with
the allele names, but we omit these since they are not needed here.

0 5 2 1 0 0 10
2 0 0 0 1 2

0 0 0 0 0
− 0 0 0

0 0 1
0 0

1

The probability model for Hardy-Weinberg equilibrium postulates that the cell
probabilities are the result of independent combination of alleles. For parameters
p = (p1, . . . , p7) that give the population proportions of each allele, the (uncondi-
tional) probability µp on upper triangular tables n = (nij)1≤i≤j≤7 with fixed total
sum of n is given by the multinomial formula

µp(n) =
(

n

(nij)

)
pf1
1 · . . . · pf7

7 2
P

i<j nij

where fi is the number of times allele i appears in the table. f1 for example is
2 × 0 + 5 + 2 + 1 + 0 + 0 + 10 = 18, a sum over the genetic pairs that contain
allele 1. These frequency counts are called sufficient statistics. The conditional
probability distribution on tables with the same allele frequencies f = (f1 = 18, f2 =
12, . . . , f7 = 15), ignoring the structural zero, is given by

µf (n) =

(
n

(nij)

)
2

P
i<j nij

(2n
f

) ,

where n is defined by 2n = f1 + f2 + · · ·+ f7 and can be interpreted as the number
of individuals in the sample, who contribute a total of 2n alleles of 7 types. This
model cannot hold with the structural zero as in the data above, which complicates
both the model and the analysis. We show how to modify the analysis to handle
the structural zero.

The constraints that come from fixing the sufficient statistics for Hardy-Weinberg
proportions are entry-wise dot products with 7 “row vectors” in A like

0 1 0 0 0 0 0
2 1 1 1 1 1

0 0 0 0 0
− 0 0 0

0 0 0
0 0

0
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which counts the number of alleles of type 2 in the table. We also force entry (4, 4)
to be zero. With f = (f1 = 18, f2 = 12, . . . , f7 = 15) the allele counts, our polytope
S0 for the exact analysis with structural zero is the set of triangular tables that have
these same allele counts and satisfy the additional linear constraint n4,4 = 0. The
conditional probability distribution on S0 is defined by µf (n) ∝

( n
(nij)

)
2

P
i<j nij .

The Markov chain of Guo and Thompson (1992) for the original test of Hardy-
Weinberg equilibrium can be described as the collection of moves that arise by

folding the traditional + −
− + minors over the diagonal: g(n)ij = nij + nji, i <

j, g(n)ii = nii:

x11x34 − x14x31 =

+ 0 0 −
0 0 0 0
− 0 0 +
0 0 0 0

g

*→

+ 0 − −
0 0 0

0 +
0

= x11x34 − x13x14.

To handle the structural zero at entry (4, 4) we can use a Lawrence lifting to get
a larger collection of Markov moves. The folded images under g of the well-known
“circuit moves” that are the universal Gröbner basis for the independence model
(fixed row and column sums) give an irreducible chain in the upper triangular tables
with the given constraints, with arbitrarily placed zeros. These moves described
differently appear in Takemura and Aoki (2002), but a proof of irreducibility can
be made quite simple by using the algebraic description above.

Computationally, it is easiest for this example to just produce the binomials
corresponding to the Markov basis from the constraint matrix by using a saturation
algorithm, such as the one implemented in Cocoa, because there are fewer than 200
total moves. The calculation requires simply typing the constraint matrix A, with
49 = 7 × 7 columns and with 7 rows for the allele constraints, one row for forcing
the lower triangle to be zeros, and one for forcing entry n44 to be zero:

Use R::=Q[x[1..7,1..7]];
Toric(A);

The work of De Loera, Haws et al. (2003) and the Latte software can be used to
enumerate the elements of the polytope S0. The value for statistics of enumeration
is significant. It can be used to benchmark sequential importance sampling, which
requires some fine tuning usually that can be done with an enumeration step. Enu-
meration can help understand convergence to stationarity of Markov chains, which
depends partly on the number of points in the polytope as well as other geometric
features such as diameter and shape. And enumeration can show the dependence
of the size of the polytope on variations in the constraint matrix and constraint
values. A typical problem of this type is feasibility, or whether the polytope S0 is
nonempty for a particular constraint vector t. This is important for applications
in SIS and disclosure limitation.

There is an efficient sequential method that fills in entries successively with
conditional distributions, which can also handle one diagonal zero. This is described
in Huber, Chen et al. (2003), and has the advantage that its complexity does not
depend on the sizes of the table entries, but only the number of cells. Lazzeroni
and Lange (1997) have extensions to multi-locus data and stopping times for exact
sampling.
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Example 2.2 (Graphical Model). We illustrate with an example from the mono-
graph of Sturmfels (2002) which describes many new results on graphical models.
Consider the notation X1−−X2−−X3−−X4, where Xi is a random variable that
takes values in {0, 1}. The notation is meant to suggest that X1 is independent
of {X3, X4} given X2, and {X1, X2} are independent of X4 given X3. The data
would be a four-way table n = (nijkl) with 24 = 16 cells each containing a count.
The notation n{1,2} used by statisticians is the 2-way table that is the projection
onto dimensions 1 and 2, with n{1,2}(00) =

∑
kl n00kl, called a margin.

The family of positive probabilities
(
pθ(ijkl)

)
θ∈R12 ⊂ R16 on the space of 24

outcomes that satisfy these independence conditions is parameterized by an expo-
nential map

pθ(ijkl) =
e(θ12|θ23|θ34)A( · ,ijkl)

zθ

where θ12 is a real vector of four components, zθ is a normalizing constant, and A
is the 12× 16 matrix with columns indexed by 0000, 0001, 0010, . . . , 1111 and rows
indexed by 2-way margin summaries for each of the 3 cliques {1, 2}, {2, 3}, {3, 4}
written by statisticians as n{1,2},n{2,3},n{3,4}:

A =

0

BBBBBBBBBBBBBBBBBB@

0000 0001 0010 1111

n{1,2}(00) 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
n{1,2}(01) 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
n{1,2}(10) 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
n{1,2}(11) 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
n{2,3}(00) 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
n{2,3}(01) 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
n{2,3}(10) 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
n{2,3}(11) 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
n{3,4}(00) 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
n{3,4}(01) 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
n{3,4}(10) 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
n{3,4}(11) 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

1

CCCCCCCCCCCCCCCCCCA

Each probability point in R16 in the parameterization lies in the toric variety
of the toric ideal IA ⊂ Q[x0000, . . . , x1111]. The parameterization seems at first
to have 12 parameters, but there are in fact only 7 free parameters which is the
dimension of the projective variety. To sample from tables with fixed margins
n{1,2},n{2,3},n{3,4}, one can run a uniform Markov chain with vector increments
that are the differences of the exponents in a generating set of binomials for the
toric ideal IA. An important result of Sturmfels says one can obtain the toric ideal
with 20 generators by saturating the smaller ideal of 12 “pairwise independence
relations.” These are obtained by fixing the values of variables {2, 4} in 4 ways for
specifying conditional independence of variables {1, 3}, then considering variables
{1, 4} fixing {2, 3} and finally considering variables {2, 4} fixing {1, 3}. Then IA =
IP : p∞ where IP =
〈x0000 x1010 − x0010 x1000, x0001 x1011 − x0011 x1001, x0100 x1110 − x0110 x1100,
x0101 x1111 − x1101 x0111, x0000 x1001 − x0001 x1000, x0010 x1011 − x1010 x0011,
x0100 x1101 − x0101 x1100, x0110 x1111 − x0111 x1110, x0000 x0101 − x0001 x0100,
x0010 x0111 − x0011 x0110, x1000 x1101 − x1001 x1100, x1010 x1111 − x1011 x1110〉
and p =

∏
ijkl xijkl .



LATTICE POINTS, CONTINGENCY TABLES, AND SAMPLING 7

An efficient way to build the Markov chain for a large class of graphical models
is described in Dobra and Sullivant (2003). Applications of the Markov chains for
graphical and more general log-linear models are in conditional statistical inference,
and in the developing area of disclosure limitation (Duncan, Fienberg et al. (2001)).
This area will provide some computational challenges since some applications in-
volve tables of more than ten factors, resulting in at least 210 indeterminates in the
polynomial ring for simple two-level factors.

3. Logistic Regression

Hosmer and Lemeshow (1989, p. 3) present data that relates presence or absence
of coronary heart disease of 100 patients to age. The age covariate extends from
year 20 to year 69. The data can be summarized in a table that looks like

Age: 1 2 3 4 . . . . . . c
yes: n1,1 n1,2 n1,3 n1,4 . . . . . . n1,c

no: n2,1 n2,2 n2,3 n2,4 . . . . . . n2,c

n+,1 n+,2 n+,3 n+,4 . . . . . . n+,c

.

The data of Hosmer and Lemeshow has c = 50 columns, one for each age level,
some of which have 0 counts in both the rows, meaning no one in the study had
that age level. A simple statistical model for evaluating the effect of age on the
presence of coronary heart disease is the logistic regression model, which specifies

that µα,β(n) ∝ e(α,β)·A0·(n1,·) where A0 =
(

1 1 . . . 1
1 2 . . . c

)
and (n1,·) is the top

row of data as a column vector. The constraints for conditional inference are: the
total number of successes T1(n) := n1,+ (top row sum) must be fixed at integer
t1 ≥ 0; and the weighted sum T2(n) := (1, 2, . . . , c) · (n1,·) =

∑c
i=1 i · n1,i must be

fixed at integer t2 ≥ 0; and the column sums n+,i must be fixed at integers ci ≥ 0,
which comes either from a design constraint on the number of subjects at each
age, or a conditioning constraint in an odds-ratio model. With the data ordered
n = (n11, . . . , n1,c, n2,1, . . . , n2,c) these can be built into a single constraint matrix

(1) A =
(

A0 0
Ic×c Ic×c

)
.

The Markov chains for computing in the set S0 of nonnegative tables with con-
straints from A have been studied in Diaconis, Graham, and Sturmfels (1996). Their
conclusion is that an irreducible chain in the collection of tables with arbitrary fixed
column sums (possibly zero), and arbitrary fixed n1,+,

∑c
i=1 i n1,i consists of vector

increments that correspond to homogeneous primitive partition identities (hppi’s),
such as 2 + 2 = 1 + 3. Computing these moves is difficult because their number
grows in c faster than any polynomial, and their degree (the total number of +’s in
the vector increment) grows linearly in c. The number of moves corresponding to
hppi’s as a function of c = 3, 4, 5, . . . is 1, 5, 16, 51, 127, 340, 798, . . . and this number
has only been computed up to c = 20 using software 4ti2 of Ralf and Raymond
Hemmecke. This will not help with a data set of 50 columns. The network method
of Mehta, Patel, and Senchaudhuri (2000) will handle this data set, but the mem-
ory requirements are large compared to the Markov chain described below, and it
is likely that some larger, more complex data sets may not be possible with the
network method.
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Consider the following collection M of
(c−1

2

)
vector increments, which together

with their negative images form moves for a Markov chain in tables (nonnegative
integer lattice points) with the above constraints.

• Choose an ordered pair of columns 1 ≤ i < j ≤ c.
• Put a + in the top row in columns i, j and put a − in adjacent columns

i + 1 and j − 1.
• Put the opposite signs in the bottom row.

With c = 6, there are 10 such moves like

+ - - + 0 0 0
- + + - 0 0 0 ,

0 + - 0 - +
0 - + 0 + - ,

etc. These moves can be seen as differences of adjacent minors, and also as a
subset of the partition identities. The first table above corresponds to the hppi
1 + 3 = 2 + 2, and the second corresponds to 2 + 6 = 3 + 5. The collection M is
generally a strict subset of hppi’s of degree four, because the adjacent +,− changes
do not include three degree 4 hppi’s (1 + 6 = 3 + 4, 2 + 6 = 4 + 4, 1 + 5 = 3 + 3).
The collection M does not include thirty-eight other hppi’s of higher degree.

Let IM denote the ideal in Q[x1, . . . , xc, y1, . . . , yc] generated by the mono-
mial differences corresponding to the moves described above: IM = 〈x1x3y2

2 −
x2

2y1y3, . . .〉.
These vectors M are a lattice basis for the kernel of the constraint matrix A,

so the ideal IM saturates to the toric ideal IA. Also, note that if we leave off the
bottom row corresponding to the y-variables and work in Q[x1, . . . , xc], then the
collection of moves on the top row corresponds in fact to a Gröbner basis for lex

order for the toric ideal corresponding to A0 =
(

1 1 1 . . . 1
1 2 3 . . . c

)
with square-free

exponent on the lead indeterminate.

Proposition 3.1. Let S0 = {n ∈ Zd
+ : An = (t1, t2, c)′} be the set of nonnegative

integer tables with fixed row sum n1,+, fixed weighted sum
∑

i n1,i and fixed column
sums n+,i. Let S2 = {z ∈ Zd : Az = (t1, t2, c)′, z1,i ≥ 0, z2,i ≥ −1}. Then the
Markov chain with moves M connects any two tables in S0 through S2.

The result is a corollary of Theorem 3.1 below, so a careful proof will not be
included. Although it appears to be very similar to the Theorem, its computational
value is less.

In the data set of Hosmer and Lemeshow with 50 columns the set S2 is about 106

times as big as S0, so calculations are possible by conditioning on S0. The goodness-
of-fit calculation required several hours of time on a 48-node Linux cluster.

Proposition 3.1 also follows from a saturation property of the ideal IM . Since

IM : (y1y2 · · · yc) = IA,

it follows that any two tables m1

m2
and n1

n2
in S0 satisfy (y1 ·y2 · . . . ·yc)(xn1yn2 −

xm1ym2 ) ∈ IM implying by results of Sturmfels (1996) that m1

m2 + 1 (the two

tables with 1 added to each cell in the bottom row) can be connected through

nonnegative integer points to n1

n2 + 1 . By comparison, the ideal for the Markov
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moves (that are also a lattice basis) of Bigatti et al. (1999) saturate slowly (with 5
columns, saturation occurs at step six).

A more careful look at the Markov chain with moves M above shows that it
is irreducible even when only the bottom row entries in columns whose sums are
fixed at 0 are allowed to drop down to -1, which is a significant computational
advantage. If S1 is this polytope that contains S0 for the data set with 50 columns,
we computed numerically by comparing time averages that |S1| ≈ 103|S0|, which is
a factor of 103 better than |S2|/|S0|.

Theorem 3.1. Let

S1 := {z ∈ Zd : Az = (t1, t2, c)′, z1,i ≥ 0, z2,i ≥ −1 if ci = 0, z2,i ≥ 0 if ci ≥ 1}
be the set of integer tables with the desired constraints, but allowing bottom row
entries to be -1 in columns i where ci = 0. Then the Markov chain with moves M
connects any two tables in S0 through S1. It is irreducible in S0 if all column sums
ci are positive.

Proof. Assume for the moment the second assertion of irreducibility in S0 if the
column sums are positive. If this were true, and we wanted to connect nonnegative

integer vectors n and m in S1, then we could connect n + 0
I{i:ci=0}

to m +

0
I{i:ci=0}

as points in S0 with constraint values t1, t2, c+ I{i:ci=0}. Then the path

from n to m is obtained by subtracting 0
I{i:ci=0}

from each intermediate table

in the connecting path. Thus the first assertion about irreducibility in S1 follows
from the second.

The second assertion is proved by showing that the L1 distance between two
tables can always be reduced by using one of the moves. One can show that a path
between two tables is possible with length at most c2 · t1.

There is an algorithm for constructing the connecting path, assuming ci ≥ 1. The
moves of adjacent minors {xiyi+1 − xi+1yi} connect all 2 × c tables with positive
column sums and the same row sums. Further, they are a Gröbner basis for their
ideal in two term orders: lex order, reading left to right, and weighted term order
with weight vector w = (1, 2, . . . , c, 0, 0, . . . , 0), with lex for ties. Consider two tables
coded as a binomial with xn1yn2 − xm1ym2 The lead term of one of the adjacent
minors divides its lead term, in lex order. Do the division and save the adjacent
minor. Now, divide the lead term of the intermediate dividend in weighted term
order, to lower the weight that just increased by 1 using also an adjacent minor
with a “−” sign. The two divisions yield a pair of adjacent minors that leave the
weights fixed. The division will terminate by connecting the two tables. As an
example, consider connecting the two tables

1 2 0 0 2
0 1 3 1 0

, 0 1 3 1 0
1 1 0 0 2

.

The procedure is a sequence of pairs of divisions that proceeds as below, with the
divisors on the right:

0)lead 12002 lex 11102 weight ; 0-+00, 000+-
00310 -> 01210 -> 0+-00 000-+
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1)lead 11111 lex 02111 weight ; -+000, 00+-0
01201 -> 10201 -> +-000 00-+0

2)lead 02201 lex 01301 weight ; 0-+00, 000+-
10111 -> 11011 -> 0+-00 000-+

3)end 01310
11002

!

The result above can be seen in the primary decomposition of IM as presented (in
edited form) by Singular (Greuel et al. (2001)) below for five columns. At this time
there do not appear to be general theorems that would give a proof based on the
primary decomposition, but for five columns it is clear. The primary decomposition
has four components, the toric part with 16 generators corresponding to the hppi’s,
and three others. Recall the basic result of Diaconis , Eisenbud, and Sturmfels:

if the binomial xn1yn2 − xm1ym2 corresponding to the two tables n1

n2
, m1

m2

belongs to the ideal IM generated by the moves M , then the moves in M connect the
two tables. If the column sum ci is positive for all i, then either xi or yi is present
in each monomial, which implies membership in each of the primary components,
and hence membership of the binomial in the ideal IM .
i;
i[1]=x(1)*x(4)*y(2)*y(3)-x(2)*x(3)*y(1)*y(4)
i[2]=x(1)*x(5)*y(2)*y(4)-x(2)*x(4)*y(1)*y(5)
i[3]=x(2)*x(5)*y(3)*y(4)-x(3)*x(4)*y(2)*y(5)
i[4]=x(1)*x(3)*y(2)^2-x(2)^2*y(1)*y(3)
i[5]=x(2)*x(4)*y(3)^2-x(3)^2*y(2)*y(4)
i[6]=x(3)*x(5)*y(4)^2-x(4)^2*y(3)*y(5)
> primarydecomposition;
[1]:

_[1]=x(3)*x(5)*y(4)^2-x(4)^2*y(3)*y(5)
_[2]=x(2)*x(5)*y(3)*y(4)-x(3)*x(4)*y(2)*y(5)
_[3]=x(2)*x(5)^2*y(4)^3-x(4)^3*y(2)*y(5)^2
_[4]=x(2)*x(4)*y(3)^2-x(3)^2*y(2)*y(4)
_[5]=x(2)^2*x(5)*y(3)^3-x(3)^3*y(2)^2*y(5)
_[6]=x(1)*x(5)*y(3)^2-x(3)^2*y(1)*y(5)
_[7]=x(1)*x(5)*y(2)*y(4)-x(2)*x(4)*y(1)*y(5)
_[8]=x(1)*x(5)^2*y(3)*y(4)^2-x(3)*x(4)^2*y(1)*y(5)^2
_[9]=x(1)*x(5)^3*y(4)^4-x(4)^4*y(1)*y(5)^3
_[10]=x(1)*x(4)*y(2)*y(3)-x(2)*x(3)*y(1)*y(4)
_[11]=x(1)*x(4)^2*y(3)^3-x(3)^3*y(1)*y(4)^2
_[12]=-x(2)^2*x(5)*y(1)*y(4)^2+x(1)*x(4)^2*y(2)^2*y(5)
_[13]=x(1)*x(3)*y(2)^2-x(2)^2*y(1)*y(3)
_[14]=x(1)^2*x(5)*y(2)^2*y(3)-x(2)^2*x(3)*y(1)^2*y(5)
_[15]=x(1)^2*x(4)*y(2)^3-x(2)^3*y(1)^2*y(4)
_[16]=x(1)^3*x(5)*y(2)^4-x(2)^4*y(1)^3*y(5)

[2]:
_[1]=y(3)
_[2]=x(3)
_[3]=x(1)*x(5)*y(2)*y(4)-x(2)*x(4)*y(1)*y(5)

[3]:
_[1]=y(4)
_[2]=x(4)
_[3]=x(1)*x(3)*y(2)^2-x(2)^2*y(1)*y(3)

[4]:
_[1]=y(2)
_[2]=x(3)*x(5)*y(4)^2-x(4)^2*y(3)*y(5)
_[3]=x(2)

> quit;

Logistic regression is a special type of odds-ratio model, a challenging class of
models for which the constraint matrices are the higher Lawrence liftings of Santos
and Sturmfels (2002).
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4. Sequential Importance Sampling

Consider the three 2× 3 tables below with the same row and column sums. It is
clear that the marginal distribution of the count in cell (1, 1) is not uniform when
the tables are equally likely.

0 0 1
1 1 0 , 0 1 0

1 0 1 , 1 0 0
0 1 1 .

One can generate tables randomly from a known distribution as follows. First, recall
the well-known Fréchet bounds on entries: max{0, ri + cj − n} ≤ nij ≤ min{ri, cj}
where the row sums are ri, the column sums are cj and n is the total count over
all cells. In particular n11 ∈ {0, 1}. Choose uniformly from this interval to get a

value for n11, say 0, to get a partial table 0
1 chosen with probability 1

2 . Now

the bounds applied to the remaining part of the table for entry (1, 2) are n2,1 ∈
[1 + 1− 2, min{1, 1}], so 1 can be chosen with probability 1

2 to get a further partial

table 0 1
1 0 . The final column is then determined. The procedure generates the

three tables above with probabilities q1 = 1
4 , q2 = 1

4 , q3 = 1
2 respectively, and sample

averages can be reweighted with the reciprocals 1/qi for approximate expectations
with respect to the uniform distribution. A description of SIS can be found in Liu
(2001) with many applications.

Consider now the problem of sampling from the 2×c tables for logistic regression
introduced in §3. Recall the set of tables

S0 := {n = (n11, n12, . . . , n1c, n21, . . . , n2,c) : An = (t1, t2, c)′}
where A is the matrix of equation (1) of §3. SIS attempts to 1) choose n11 for the
first cell in a range of values, say an interval [l1, u1], that allows ultimate completion
to a table in S0, then 2) choose n1,2 from a new updated interval [l2(n11), u2(n11)]
that allows ultimate completion, etc. It is useful if these intervals can be accurately
computed during the sampling, and it is better if the range of values are intervals
without gaps. That is, at each stage it is useful if the projection onto the next
dimension of the polytope, after having fixed the first coordinate values, is an
unbroken interval.

Proposition 4.1. If the column sums ci are constrained to be positive, then every
integer in a subinterval of the Fréchet bounds for n11 can yield a valid table in S0.

Proof. With positive column sums, all tables in S0 are connected with the moves
in M , which correspond to a lex Gröbner basis with square-free exponent on first
indeterminate. Since entries n1,1 for cell (1, 1) are incremented by 1 in a connecting
path between tables, the set of feasible values for cell (1, 1) is an interval of integers
with no gaps. !

By comparison, consider the two tables 0 3 0 0
2 0 0 1 , 2 0 0 1

0 3 0 0 . There

are no tables with the same constraint values and the value 1 in cell (1,1), but
these two tables are not in the same connected component of the Markov chain
built with the moves in M . The simplest example of this connectivity issue has
A :=

(
1 3

)
. The set S0 = {(n1, n2) : An = 3} includes points (0, 1), (3, 0) so
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the first coordinate is not in a complete interval. Here the Gröbner basis for IA

is {x3 − y} and does not have the square-free property . When structural zeros
are imposed on tables, the sequential-interval property may be lost, because the
Markov chain for irreducibility may no longer have the square-free property, which
occurs for example in the genotype data of §2.

For logistic regression there is a recurring structure that reduces the problem of
determining sampling intervals [li, ui] to the case of [l1, u1], the first column. Recall
that we need to fix the row sum T1(n) := n1,+ = t1, and the weighted row sum
T2(n) :=

∑
i i · n1,i = t2, and the column sums n+,i = ci. The following diagram

illustrates how the problem of interval values recurs with different constraints after
the first column is filled:

[l1, u1] n1,2 n1,3 n1,4 . . . n1,c

c1 − [l1, u1] n2,2 n2,3 n2,4 . . . n2,c
: T1(n) = t1
T2(n) = t2

x
c1 − x

[l2(x), u2(x)] n1,3 n1,4 . . . n1,c

c2 − [l2(x), u2(x)] n2,3 n2,4 . . . n2,c
: T1(n(·,2:c)) = t1 − x

T2(n(·,2:c)) = t2 − t1
.

Computing the interval [l1, u1] is made more efficient with the following feasibility
test.

Proposition 4.2. Assume ci ≥ 1. Let n =
∑c

i=1 ci be the table sum. For each
x ∈ [0, c1] define tables nL(x),nU (x) by

nL(x) := x min{c2, r1 − x} min{c3, r1 − x − n12} . . .
c1 − x c2 − n1,2 c3 − n1,3 . . .

nU (x) := x max{c2 + r1 − x − n, 0} max{c3 + r1 − x − n12 − n, 0} . . .
c1 − x c2 − n1,2 c3 − n1,3 . . .

Then a nonnegative integer x ∈ [l1, u1] if and only if T2(nL(x)) ≤ t2 ≤ T2(nU (x)).

Proof. The tables nL(x),nU (x) minimize and maximize the value of T2 over the
collection of 2 × c tables with top row sum t1 and column sums ci. nL(x) puts
the largest values possible to the left in the upper row, consistent with the Fréchet
bounds for rectangular tables. Similarly, nU (x) puts the smallest values possible
to the left, and hence the largest on the right, consistent with the Fréchet bounds.
Then it is clear that both inequalities must hold if a value x is consistent with
T2 = t2. Conversely, if both inequalities hold, then there are two tables m and n
with the right row and column sums, but T2(m) ≤ t2, T2(n) ≥ t2. With column
sums positive the table m can be connected to n with a sequence of adjacent minor

moves (Sturmfels (2002), p. 64) . . . − + . . .
. . . + − . . .

, each of which changes the value

of T2 by ±1. Therefore the intermediate value theorem proves that some table will
have the right value T2 = t2. !

Example 4.1 (Cancer data from Sugiura and Otake (1974)). Binary data on death
from leukemia is classified by dose at 6-levels.
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5 4 6 1 3 6
5973 11811 2620 771 792 820

It took only a few seconds to obtain 106 samples with SIS, which gave an estimate
of 3053 with standard error 27.8 for the total number of tables with the same
constraints. Based on these samples, the exact p-value for goodness-of-fit can be
estimated at 0.0875 with standard error 0.005.

When some column sums are zero, SIS can still work without the sequential-
interval property. The results for the 50 column cancer data of Hosmer and
Lemeshow agreed closely with the Markov chain analysis.

For decomposable graphical models, it is known that there is a Markov basis
with square free initial terms (Dobra and Sullivant (2003)) , and there are sharp
bounds analogous to the Fréchet bounds (Dobra and Fienberg (2000)) so some of
the elements for SIS are in place and a general theory may be possible. The use of
algebra in SIS is relatively undeveloped compared to its use in designing Markov
chains.
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