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Abstract. We describe new results for upper and lower bounds on the entries in multi-way tables of counts based on a set of
released and possibly overlapping marginal tables which have practical importance for assessing disclosure risk. In particular,
we present a generalized version of the shuttle algorithm proposed by Buzzigoli and Giusti that is proven to compute sharp
integer bounds for an arbitrary set of fixed marginals. The method forms part of a project developing a Web-based query system
for statistical databases. Its goal is to allow the use of disclosure limitation methods in response to a series of queries in which
the public knowledge of releases is cumulative.
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1. Introduction

The National Institute of Statistical Sciences has recently assembled a team of statistical researchers
from multiple universities who, working with statisticians in US statistical agencies, are developing a
Web-based query system for statistical databases. Their goal is a system that allows the use of disclosure
limitation methods (e.g., see [18,19]) applied sequentially in response to a series of statistical queries in
which the public knowledge of releases is cumulative (c.f. a pilot project described in [13]). The idea
is to fully automate recent methods for disclosure limitation, intruder behavior (c.f. [9]) and alternative
approaches to risk assessment.

Consider a database consisting of ak-way contingency table, for which the queries come in the form
of requests for marginal tables. What is intuitively clear from statistical theory is that, as margins are
released and cumulated by users, there is increasing information available about the table entries. In
response to a new query, the system now examines it in combination with all those previously released
margins and decides if the risk of disclosure of individuals in the full unreleased table is too great. Then
it might offer one of three responses: (1) yes – release; (2) no – don’t release; or perhaps (3) simulate
a new table, which is consistent with the previously released margins, and then release the requested
margin table from it (c.f. [1]). Because released margins need to be consistent and even simulated,
releases become highly constrained.

0167-8000/01/$8.00 2001 – IOS Press. All rights reserved



364 A. Dobra and S.E. Fienberg / Bounds for cell entries in contingency tables induced by fixed marginal totals

How might such a system evaluate the risk of disclosure from the release of a new margin? A number
of researchers have recently been working on the problem of determining upper and lower bounds on
the cells of the cross-classification given a set of margins. This is in one sense an old problem (at least
for two-way tables) but it is also deeply linked to recent mathematical statistical developments and has
generated a flurry of new research (e.g., see Buzzigoli and Giusti [2], Cox [3], Fienberg [8], and Roehrig
et al. [17]). Here we outline some recent results on this problem due to Dobra and Fienberg [6] and
Dobra [4,5] and we illustrate our methodology on an example.

2. Technical background

Upper and lower bounds induced by some fixed set of marginals on the cell entries of a contingency
table are of great importance in measuring the disclosure risk associated with the release of these marginal
totals, e.g., see the various papers in the 1993 and 1998 special issues of The Journal of Official Statistics,
as well as the Proceedings of the Statistical Data Protection Conference, Lisbon 1998. The classes of
bounds we are concerned with also appear in a number of other contexts such as mass transportation
problems. Fŕechet originally described bounds on cell counts in cross-classifications of positive counts
in terms of cumulative distribution functions (c.d.f. henceforth). If we normalize each entry in a two-
dimensional table by dividing it by the grand total, then adding up the appropriate proportions obtained
in this way, we end up with the c.d.f. Bonferroni and Hoeffding independently developed related results
on bounds. Until recently, the efforts of solving this bound problem have been largely focused on the
situation when the fixed marginals are non-overlapping [8], but our interest is in the cases when the
margins being fixed are multidimensional and overlapping, in which case consistency constraints have
to be imposed [12].

Any contingency table with non-negative integer entries and fixed marginal totals is a lattice point
in the convex polytopeQ defined by the linear system of equations induced by the released marginals.
The constraints given by the values in the released marginals induce upper and lower bounds on the
interior cells of the initial table. These bounds or feasibility intervals can be obtained by solving the
corresponding linear programming problems. The importance of systematically investigating these
linear systems of equations should be readily apparent. If the number of lattice points inQ is below
a certain threshold, we have significant evidence that a potential disclosure of the entire dataset might
have occurred. Moreover, if the induced upper and lower bounds are too tight or too close to the actual
sensitive value in a cell entry, the information associated with the individuals classified in that cell may
become public knowledge.

The problem of determining sharp upper and lower bounds for the cell entries subject to some linear
constraints expressed in this form is known to be NP-hard [16]. Several approaches have been proposed
for computing bounds. However, almost all of them have drawbacks that show the need for alternate
solutions. Network models need formal structure to work even for 3-way tables and besides there is no
general formulation for higher-way tables. The most natural method for solving linear programming
problems is the simplex method. In this case we would have to run the procedure twice for every element
in the table and consequently we would ignore the underlying dependencies among the marginals by
regarding the maximization/minimization problem associated with some cell as unrelated to the parallel
problems associated with the remainder of the cells in the table. Although the simplex method works well
for small problems and dimensions, by employing it we would ignore the special structure of the problem
because we would consider every table as a linear list of cells. The computational inadequacy of the
simplex approach is further augmented by the fact that we may get fractional bounds [3], which are very
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Fig. 1. Independence graph induced by the marginals [BF], [ABCE] and [ADE].

difficult to interpret. To avoid fractional bounds, one would have to make use of integer programming
algorithms, but their computational complexity prevent their usage even for problems of modest size.
These considerations suggest the need for more specialized, computationally inexpensive algorithms that
could fully exploit the special structure of the problem we are dealing with.

Agencies often employ disclosure limitation methods such as cell suppression and data swapping.
The object of both methods is to create a replacement table for the genuine unsafe marginal. Both table
protection methods preserve a given set of marginal totals that were previously released. Log-linear
models (see [1]) are the most usual way of representing and studying contingency tables with fixed
marginals, and Fienberg et al. [11] and Fienberg [8] have demonstrated the clear links between log-linear
models and disclosure limitation techniques. Throughout this paper, we exploit log-linear models theory
to identify special settings amenable to alternative and more efficient techniques for determining sharp
bounds. In particular, when the released marginals are the minimal sufficient statistics (MSS henceforth)
of a decomposable log-linear model, we are able to express the upper and lower bounds as explicit
functions of marginal totals [6]. We extend our results to more general structures for which we can
considerably reduce the computational effort required to solve the linear problems.

3. New results on bounds

We visualize the dependency patterns induced by the released marginals by constructing an indepen-
dence graph for the variables in the underlying cross-classification. Each variable cross-classified in the
table is associated with a vertex in this graph. If two variables are not connected, they are conditionally
independent given the remainder. Models described solely in terms of such conditional independencies
are said to be graphical (e.g., see [14]). The data in Table 1 come from a prospective epidemiological
study of 1841 workers in a Czechoslovakian car factory, as part of an investigation of potential risk
factors for coronary thrombosis (see [7]). Assume we are provided with three marginal tables [BF],
[ABCE], and [ADE] of this 6-way table. These are the marginals corresponding to a graphical model
whose independence graph is given in Fig. 1. In order to reach A, D or E starting from F, we have to go
through B or C, hence F is independent of A, E, D given B and C. This means that [BC] is a separator of
the graph. In the same way, B, C, F are independent of D given A and E, thus [AE] is also a separator of
the graph.

Decomposable graphical models have closed form structure and special properties. The expected
cell values can be expressed as a function of the fixed marginals. To be more explicit, the maximum
likelihood estimates are the product of the marginals divided by the product of the separators. By
induction on the number of MSSs, in Dobra and Fienberg [6], we developed generalized Fréchet bounds
for decomposable log-linear models with any number of MSSs. These Fréchet bounds are sharp in the
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Table 1
Autoworkers data. Source: Edwards and Havranek [7]

F E D C B no yes
A no yes no yes

neg < 3 < 140 no 44 40 112 67
yes 129 145 12 23

� 140 no 35 12 80 33
yes 109 67 7 9

� 3 < 140 no 23 32 70 66
yes 50 80 7 13

� 140 no 24 25 73 57
yes 51 63 7 16

pos < 3 < 140 no 5 7 21 9
yes 9 17 1 4

� 140 no 4 3 11 8
yes 14 17 5 2

� 3 � 140 no 7 3 14 14
yes 9 16 2 3

� 140 no 4 0 13 11
yes 5 14 4 4

A, smoking; B, strenuous mental work; C, strenuous physical
work; D, systolic blood pressure; E, ratio ofβ andα lipopro-
teins; F, family anamnesis of coronary heart disease.

sense that they are the tightest possible bounds given the marginals, and, in addition, we can determine
feasible tables for which these bounds are attained.

Theorem 1 (Generalized Fréchet Bounds for Decomposable Models). Assume that the released set of
marginals for ak-way contingency table is the set of MSSs of a decomposable log-linear model. Then
the upper bounds for the cell entries in the initial table are the minimum of relevant margins, while the
lower bounds are the maximum of zero, or sum of the relevant margins minus the separators.

For example, the upper bounds for the cell entries in Table 1 induced by the marginals [BF], [ABCE],
and [ADE] are the minimum of the corresponding entries in the fixed marginals, while the lower bounds
are the sum of the same entries minus the sum of the corresponding entries in the marginals associated
with the separators of the independence graph, i.e., [B] and [AE]. We give these bounds in Table 2.

When the log-linear model associated with the released set of marginals is not decomposable, it is
natural to ask ourselves whether we could reduce the computational effort needed to determine the
tightest bounds by employing the same strategy used for decomposable graphs, i.e. decompositions of
graphs by means of complete separators. An independence graph that is not necessarily decomposable,
but still admits a proper decomposition, is calledreducible [15]. Once again, we point out the link with
maximum likelihood estimation in log-linear models. We define a reducible log-linear model [6] as
one for which the corresponding MSSs are marginals that characterize the components of a reducible
independence graph. If we can calculate the maximum likelihood estimates for the log-linear models
corresponding to every component of a reducible graphG, then we can easily derive explicit formulae
for the maximum likelihood estimates in the reducible log-linear model with independence graphG [6].
We state the result, but postpone explaining how to use it for the moment.

Theorem 2 (Generalized Fréchet Bounds for Reducible Models). Assume that the released set of
marginals is the set of MSSs of a reducible log-linear model. Then the upper bounds for the cell entries
in the initial table are the minimum of upper bounds of relevant components, while the lower bounds are
the maximum of zero, or sum of the lower bounds of relevant components minus the separators.
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Table 2
Bounds for autoworkers data given the marginals [BF], [ABCE], [ADE]

F E D C B no yes
A no yes no yes

neg < 3 < 140 no [0,88] [0,62] [0,224] [0,117]
yes [0,261] [0,246] [0,25] [0,38]

� 140 no [0,88] [0,62] [0,224] [0,117]
yes [0,261] [0,151] [0,25] [0,38]

� 3 < 140 no [0,58] [0,60] [0,170] [0,148]
yes [0,115] [0,173] [0,20] [0,36]

� 140 no [0,58] [0,60] [0,170] [0,148]
yes [0,115] [0,173] [0,20] [0,36]

pos < 3 < 140 no [0,88] [0,62] [0,126] [0,117]
yes [0,134] [0,134] [0,25] [0,38]

� 140 no [0,88] [0,62] [0,126] [0,117]
yes [0,134] [0,134] [0,25] [0,38]

� 3 < 140 no [0,58] [0,60] [0,126] [0,126]
yes [0,115] [0,134] [0,20] [0,36]

� 140 no [0,58] [0,60] [0,126] [0,126]
yes [0,115] [0,134] [0,20] [0,36]

4. A new algorithm

When the independence graph corresponding to a set of released marginals is not reducible, the
Fréchet-like inequalities presented in the preceding section do not produce sharp bounds, and we must
employ an iterative procedure. The main drawback of the existing iterative procedures such as the
simplex method is that they offer no guarantee that the resulting bounds will be the best integer bounds.
Again, the statistical literature on contingency tables helps us. Up until now, we were able to visualize the
dependencies induced among the variables cross-classified in a table of counts by the set of fixed marginals
by constructing the related independence graph. Nevertheless, if all (k-1)-dimensional marginal tables
are given, the corresponding independence graph is complete, hence the line of reasoning we followed
so far is ineffective in this setting. The log-linear model of no (k-1)-order interaction is not graphical,
and the only way we could compute the maximum likelihood estimates associated with it is through
some iterative method such as the iterative fitting procedure [1]. By exploiting the intrinsic conditional
independence relationships, we were able to considerably reduce or even completely eliminate the need
of employing an iterative procedure in the situations we studied before, but in this particular context
there are no such relationships to exploit. Buzzigoli and Giusti [2] proposed what they called the shuttle
algorithm for computing the upper and lower bounds induced by the (k-1)-way marginals on the cell
entries of ak-way table. Their procedure alternates iteratively between upper and lower bounds, but
does not always converge to the sharpest bounds possible [3].

Following Fienberg [8], we note that, if the table is dichotomous, the log-linear model of nokth-order
interaction has only one degree of freedom, thus we can uniquely express the counts in any cell as a
function of one single fixed cell alone. By imposing the non-negativity constraints for every cell in our
contingency table, we are then able to derive sharp upper and lower bounds. Therefore there is no need
for employing iterative methods in this case. It turns out that dichotomous tables are the key to derive
sharp bounds for an arbitraryk-way table.

In order to capture the underlying dependencies induced among the cell counts in ak-way table, we
consider the setS of all possible dichotomous tables obtained by collapsing the originalk-way table,
not only across variables, but also across categories within variables. The categories associated with a
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variable are divided in two groups; hence we replace every variable with a dichotomous one, and end up
with a dichotomousk-way table. We letT be the set containing the cells of all dichotomizationsS of
the original table, formed by collapsing the initial table in every possible way. Therefore, if we fix a set
of marginals, we are able to state the bounds problem in a new equivalent form: “Find the boundsT U

andT L for the cellsT given that we know the values of some cellsT0 ⊂ T ”.
It is not hard to see that the upper and lower bounds for the cells inT are interlinked, i.e., bounds

for some cells inT induce bounds for some other cells inT . The dependencies induced by the fixed
marginals among the cells inT can be expressed as “two-cell” dependencies defined as follows. Lett 1

andt2 in T such that their joint12 is still in T . Then upper and lower bounds for the cellst1 andt2
translate into upper and lower bounds for their joint12:

tL1 + tL2 � t12 = t1 + t2 � tU1 + tU2 .

Similarly, bounds fort2 andt12 translate into bounds fort1:

tL12 − tU2 � t1 = t12 − t2 � tU12 − tL2 .

We iterate thorough these “two-cell” dependencies until the upper bounds for the cells inT no longer
decrease and the lower bounds no longer increase. The careful reader will notice that this is actually
a generalized version of the Buzzigoli-Giusti shuttle algorithm. We “know” a cell if the current upper
bound is equal to the current lower bound. As we attempt to adjust the bounds so that the two-cell
dependencies are simultaneously satisfied, the feasibility interval for every cell will shrink, hence the set
of “known” cellsT0 will get larger. Unfortunately, the bounds we end up with are not necessarily sharp,
except in: (i) the decomposable case, and (ii) the case of a dichotomousk-way table with all (k-1)-way
marginals fixed. To be more explicit, if the marginals we fix are the MSSs of a decomposable log-linear
model, the bounds calculated by the generalized shuttle algorithm will coincide with the bounds obtained
by making use of Theorem 1, whereas in case (ii), the generalized shuttle algorithm will successfully
determine the best integer bounds by expressing any cell as a function of any other cell, and then imposing
the non-negativity conditions on these constraints. There may be other situations when the generalized
shuttle algorithm will converge to the best integer bounds, but further research is needed to identify them.

For the generalk-way bound problem, we need to “correct” the resulting bounds by constructing
feasible integer tables for which those bounds are actually attained. We explore the spaceQ by repeatedly
assigning values to the cells in the original table. We do not perform an exhaustive search ofQ since
we immediately adjust the upper and lower bounds for the remaining cells inT once we picked a value
for a cell entry, and consequently the values we attempt to assign to a particular cell are chosen from the
current feasibility interval associated with that entry.

A combination of assigned values is inconsistent if, given that we knowt1, t2 andt12 such that the
join of t1, t2 is t12, we havet1 + t2 �= t12. Once we encountered an inconsistency, we stop and attempt
to assign new values to the cells we previously fixed. We successfully determined a feasible table if we
managed to pick a value for all the cells in the initial table. The algorithm we described will therefore be
able to identify any combination of marginals that does not correspond to an integer feasible table, i.e.,
it will be able to highlight the cases when the convex polytope defined by the fixed marginals does not
contain any lattice points. Further technical details can be found in Dobra [5].
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Table 3
Marginal [ABCE] of autoworkers data and bounds for this marginal given all two-dimensional totals

E C B no no B no yes
A no yes no yes A no yes no yes

< 3 No 88 62 224 117 [0,206] [0,167] [0,404] [0,312]
∴ [0,312.67]

Yes 261 246 25 38 [0,421] [0,463] [0,119] [0,119]
� 3 No 58 60 170 148 [0,181] [0,167] [0,363] [0,339]

Yes 115 173 20 36 [0,314] [0,344] [0,119] [0,119]

Table 4
Marginal [AED] of autoworkers data and bounds for this
marginal given all two-dimensional totals

E D A no yes A no yes
< 3 no 333 312 [182,515] [130,463]

yes 265 151 [83,416] [0,333]
� 3 no 182 227 [0,333] [76,409]

yes 181 190 [30,363] [8,341]

5. Example reconsidered

To clarify the concepts and results presented so far, we again make use of autoworkers data in Table 1.
This time, however, we assume that the fixed marginals are [BF], [BC], [BE], [AB], [AC], [AE], [CE],
[DE], [AD]. Note that the independence graph associated with this set of marginals is the same in Fig. 1
since the log-linear model whose MSSs correspond to those marginals is not graphical. Hence every
component of the independence graph is not necessarily associated with a single minimal sufficient
statistic, but possibly with two or more MSSs.

The independence graph in Fig. 1 decomposes in three components, [BF], [ABCE], and [ADE], and
two separators, [B] and [AE]. The first component, [BF], is assumed fixed, hence there is nothing to
be done. The other two components are not fixed, however, and we need to compute upper and lower
bounds for each of them. By making use of the generalized shuttle algorithm, we computed bounds for
the cell entries in the marginal [ABCE] given the marginals [BC], [BE],[AB], [AC], [AE], [CE] (see
Table 3). We did the same for the marginal [ADE] given the marginals [AE], [DE], [AD] (see Table 4).

If we were to compute bounds for the marginal [ABCE] by employing the simplex method, we would
obtain a fractional upper bound. In Table 3, this fractional upper bound is indicated by the symbol “∴”.
Fractional bounds are exactly the situations when the simplex approach fails to correctly solve the integer
programming problem of interest. Although one might argue that these situations rarely occur, we have
no way to know beforehand when this phenomenon will take place. Since we have upper and lower
bounds for each of the components of a reducible graph, Theorem 2 now allows us to piece together
the bounds for the components [BF], [ABCE] and [ADE] to obtain sharp integer bounds for the original
6-way table – see Table 5. Again, we note that the simplex method would have failed to compute sharp
integer bounds for two cells in the table.

We emphasize that Theorem 2 is a sound technique for replacing the original problem, namely,
computing bounds for a 6-way table, by two smaller ones, i.e., computing bounds for a 4-way and a
3-way table. The computational effort required for implementing and using Theorem 2 is ignorable, and
thus exploiting it in this fashion could lead to appreciable computational savings.
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Table 5
Bounds for the autoworkers data given the margins [BF], [BC], [BE],[AB], [AC], [AE],
[CE], [DE], [AD]

F E D C B no yes
A no yes no yes

Neg < 3 < 140 no [0,206] [0,167] [0,404] [0,312]
∴ [0,312.67]

yes [0,421] [0,463] [0,119] [0,119]
� 140 no [0,206] [0,167] [0,404] [0,312]

∴ [0,312.67]
yes [0,416] [0,333] [0,119] [0,119]

� 3 < 140 no [0,181] [0,167] [0,333] [0,339]
yes [0,314] [0,344] [0,119] [0,119]

� 140 no [0,181] [0,167] [0,363] [0,339]
yes [0,314] [0,341] [0,119] [0,119]

Pos < 3 < 140 no [0,134] [0,134] [0,126] [0,126]
yes [0,134] [0,134] [0,119] [0,119]

� 140 no [0,134] [0,134] [0,126] [0,126]
yes [0,134] [0,134] [0,119] [0,119]

� 3 < 140 no [0,134] [0,134] [0,126] [0,126]
yes [0,134] [0,134] [0,119] [0,119]

� 140 no [0,134] [0,134] [0,126] [0,126]
yes [0,134] [0,134] [0,119] [0,119]

6. Conclusions

In this paper we have shown how log-linear model statistical theory can help identify situations when
explicit formulas exist for computing the best integer bounds on the entries of a cross-classification of
arbitrary dimension given a set of marginal totals. When such formulas do not exist, we illustrated how to
derive similar formulas for reducing the computational effort. In addition, we explained how log-linear
models provide the basis for correcting the shuttle algorithm originally proposed by Buzzigoli and Giusti,
and transform it into a general procedure for computing sharp integer bounds given any set of marginals.
The generalized shuttle algorithm described here simultaneously computes sharp integer bounds for the
cells inT by fully exploiting the structure of the bounds problem for multi-way contingency tables and,
in addition, it can update the bounds, as more marginals are being released.

Preparation of this paper was supported in part by the National Science Foundation under Grant
EIA-9876619 to the National Institute of Statistical Sciences.
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