Course Overview – Nonparametric Regression and Classification

STAT/BIOSTAT 527, University of Washington
Emily Fox
April 1st, 2014

Course Staff

- Instructor: Emily Fox
- TA: Amrit Dhar
Content: What is the course about?

Course Structure

- 3 Primary Tasks:
 - Regression
 - Classification
 - Density Estimation

- 5 Modules:
 - Nonparametric Preliminaries
 - Splines and Kernels
 - Bayesian Nonparametrics
 - Nonparametrics for Multivariate Covariates
 - Classification
Task 1: Regression

- Assume a sample
- Model:

 Task involves estimating the function f

- Goals of nonparametric approach:
 - Make few assumptions about f
 - Use a large number of parameters, but constrained in some way to avoid overfitting the data
 - Complexity can grow with the sample size

Task 2: Classification

- Assume a sample $(x_1, Y_1), \ldots, (x_n, Y_n)$

 Task involves estimating a predictive model of Y given x

 Goals of nonparametrics are as before, but now for link between x and Y with Y discrete-valued
Task 3: Density Estimation

- Assume a sample

- Task involves estimating the density p

- Goals of nonparametric approach are as before, but applied to the estimation of p

fMRI Prediction Task

- **Goal:** Predict word stimulus from fMRI image
Functional Magnetic Resonance Imaging (fMRI)

- ~1 mm resolution
- ~1 image per sec.
- 20,000 voxels/image
- safe, non-invasive
- measures Blood Oxygen Level Dependent (BOLD) response

Typical fMRI response to impulse of neural activity
Typical Stimuli

Each stimulus repeated several times

fMRI Activation

fMRI activation for “bottle”:

Mean activation averaged over 60 different stimuli:

“bottle” minus mean activation:
fMRI Prediction Task

- **Goal:** Predict word stimulus from fMRI image
- **Challenges:**
 - $p >> n$ (covariate dimension >> sample size)
 - Cost of fMRI recordings is high
 - Only have a few training examples for each word

Zero-Shot Classification

- **Goal:** Classify words not in the training set
- **Challenges:**
 - Cost of fMRI recordings is high
 - Can’t get recordings for every word in the vocabulary
Zero-Shot Classification

- **Goal**: Classify words not in the training set
- **Challenges**:
 - Cost of fMRI recordings is high
 - Can't get recordings for every word in the vocabulary
 - We don't have many brain images, but we have a lot of info about the words and how they relate (co-occurrence, etc.)
 - How do we utilize this “cheap” information?

Classifier (logistic regression, kNN, …)

Semantic Features

<table>
<thead>
<tr>
<th>Semantic feature values: “celery”</th>
<th>Semantic feature values: “airplane”</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8368, eat</td>
<td>0.8673, ride</td>
</tr>
<tr>
<td>0.3461, taste</td>
<td>0.2891, see</td>
</tr>
<tr>
<td>0.3153, fill</td>
<td>0.2851, say</td>
</tr>
<tr>
<td>0.2430, see</td>
<td>0.1689, near</td>
</tr>
<tr>
<td>0.1145, clean</td>
<td>0.1228, open</td>
</tr>
<tr>
<td>0.0600, open</td>
<td>0.0883, hear</td>
</tr>
<tr>
<td>0.0586, smell</td>
<td>0.0771, run</td>
</tr>
<tr>
<td>0.0286, touch</td>
<td>0.0749, lift</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>0.0000, drive</td>
<td>0.0049, smell</td>
</tr>
<tr>
<td>0.0000, wear</td>
<td>0.0010, wear</td>
</tr>
<tr>
<td>0.0000, lift</td>
<td>0.0000, taste</td>
</tr>
<tr>
<td>0.0000, break</td>
<td>0.0000, rub</td>
</tr>
<tr>
<td>0.0000, ride</td>
<td>0.0000, manipulate</td>
</tr>
</tbody>
</table>
Zero-Shot Classification

- From training data, learn two mappings:
 - S: input image → semantic features
 - L: semantic features → word

- Can use “cheap” co-occurrence data to help learn L

Assumed Background

- [Stat 502 and Stat 504] or [Biostat 514 and Biostat 515]

- Comfortable with:
 - Linear algebra
 - Probability
 - R (or Matlab, Python, etc.)

- Computational and mathematical maturity
 - Many concepts thrown at you quickly!
 - Some background is not provided in above courses and requires significant dedication to keep up
 - Expected to implement many methods from scratch
Logistics: How is the course going to run?

Website and Discussion Board

- Course website: http://stat.washington.edu/courses/stat527/s14

- Catalyst:
 - Used for all discussions
 - Post all questions there (unless personal)
 - Completed assignments submitted via Catalyst dropbox
 - Homework solutions and feedback on assignments posted through Catalyst
Reading

- **Primary reference:**
 - Hastie, Tibshirani, Friedman “The Elements of Statistical Learning”, Springer 2009

- **Other strongly suggested textbooks (on website):**
 - Wasserman, “All of Nonparametric Statistics”, Springer 2005

- Papers linked on course website

Homework

- Roughly 5 HWs total
- Assigned and due on *Thursdays*
 - Starting weekly then biweekly
- Collaboration allowed, but write-ups and coding must be done individually
- Submitted via Catalyst before start of lecture
- Allowed 2 “late days” for entire quarter
Project

- **Options:**
 - Choose project from specified list
 - Re-implement existing paper from specified list
 - Propose own project idea
- **Individual**
- **New work, but can be connected to research**
- **Schedule:**
 - Proposal (1 page) – April 24
 - Progress report (3 pages) – May 15
 - Project presentation – **TBD (poster or in-class)**
 - Final report (8 pages, NIPS format) – June 10

Grading

- **HWs (60%)**
 - One HW treated as “midterm” and worth more
- **Final project (40%)**
 - Midway report (20%)
 - Project presentation (20%)
 - Final paper (60%)
Support/Resources

- Office Hours
 - TA: W 12:30-2:30pm in Padelford B-302
 - Emily: Th 10:30-11:30am in CSE 346

- Recitations
 - Optional tutorial/example-based sections will be held *every other* week
 - Very helpful for homework!
 - Location TBD

Module 1: Nonparametric Preliminaries

What to Report?, Model Selection, Model Assessment

STAT/BIOSTAT 527, University of Washington
Emily Fox
April 1st, 2014
The Optimal Prediction

- Assume we know the data-generating mechanism

- If our task is prediction, which summary of the distribution $Y | x$ should we report?

The Optimal Prediction

- Taking a decision-theoretic framework, consider the expected loss

- What are loss functions we might consider?
Continuous Responses

- Expected loss: \(E_X \left\{ E_{Y|X} \left[L(Y, f(x)) \mid X = x \right] \right\} \)

 - Example: \(L_2 \)

 Solution:

 - Example: \(L_1 \)

 Solution:

- More generally: \(L_p \)

General Responses

- Expected loss: \(E_X \left\{ E_{Y|X} \left[L(Y, f(x)) \mid X = x \right] \right\} \)

 - Example: log-likelihood

 When Gaussian:

 When Laplace:
Incorporating Models into Prediction

- We don’t actually know the data-generating mechanism
- Need an estimator \(\hat{f}_{n}(\cdot) \) based on a random sample \(Y_1, \ldots, Y_n \), also known as training data

- Statistical models can be used to encode knowledge about aspects of the data-generating mechanism
- Models can provide simplifying assumptions
 - Can help cope with estimation issues due to limited data

Incorporating Models into Prediction

- Assume some form for how the data are generated
 - E.g., \(Y = f(x) + \epsilon \quad E[\epsilon] = 0 \quad \text{var}(\epsilon) = \sigma^2 \)

 - For non-constant variance, can consider GLMs
- Then, typically assume some form for \(f(x) \)

- Model + loss function \(\rightarrow \) some estimator
Parametric Regression

- Parametric inference assumes parametric form for $f(x)$

- Advantages:
 - Efficient estimation
 - Concise summarization

- What is the right parametric form for $f(x)$?

Goals of Nonparam Regression

- Goals of nonparametric inference:
 - Assume little prior knowledge of data-generating mechanism
 - More flexibly model f (i.e., relationship between x and Y)
 - Maintain “reasonable” efficiency of estimation

- Often actually assume parametric forms with large numbers of parameters
 - Constrained to avoid overfitting the data

- Particularly useful when task is prediction
 - Focus on accuracy of prediction rather than parameter values

- Let’s discuss this idea of “complexity” more…
Model Complexity

- How complex of a function should we choose?
 - To increase flexibility, using many parameters is attractive
 - However, wide prediction intervals...
 - Leads to wild predictions

Example: Polynomial Regression

- For added flexibility, allow for high order polynomial, right?
Example: Polynomial Regression

- For added flexibility, allow for high order polynomial, right?

Measuring Predictive Performance

- Having chosen a model, how do we assess its performance?

- Assume estimate $\hat{f}_n(\cdot)$ based on training data y_1, \ldots, y_n

- The **generalization error** provides a measure of predictive performance

$$GE(\hat{f}_n) = E_{Y,X} \left[L(Y, \hat{f}_n(X)) \right]$$
Measuring Predictive Performance

- Assume L_2 loss
- Averaging over repeat training sets $Y_n = Y_1, \ldots, Y_n$ we get the **predictive risk** at x^*

$$E_{Y^*, Y_n} \left[(Y^* - \hat{f}_n(x^*))^2 \right] =$$

- Recall $MSE[\hat{f}_n(x)] = \text{bias}(\hat{f}_n(x))^2 + \text{var}(\hat{f}_n(x))$

- Finally, let’s average over covariates x
 - *Integrated MSE*
 - *Average MSE*
 - Note: \textit{avg. pred. risk} = $\sigma^2 + \text{avg. MSE}$
Bias-Variance Tradeoff

- Minimizing risk = balancing bias and variance

- Note: \(f(x) \) is unknown, so cannot actually compute MSE

In Practice…

- Minimizing risk = balancing bias and variance

![Plot showing behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error, while the light red curves show the conditional test error. For 100 training sets of size 50 each, as the model complexity is increased, the solid red curve shows the average, and hence an estimate of test error. Estimation of test error will be our goal, although we will see that expected error is more amenable to statistical analysis, and most methods effectively estimate the expected error. It does not seem possible to estimate conditional prediction error from Hastie, Tibshirani, Friedman](image-url)
More on Nonparam Regression

- Often framed as learning functions with a complexity penalty
 - Regular behavior in small neighborhoods of the input
 - E.g., locally linear or low-order polynomial... estimator results from averaging over these local fits

- Choice of neighborhood = strength of constraint
 - Large neighborhood can lead to linear fit (very restrictive) whereas small neighborhoods can lead to interpolation (no restriction)

More on Nonparam Regression

- Different restrictions lead to different nonparametric approaches
 - Roughness penalty → splines
 - Weighting data locally → kernel methods
 - Etc.

- Each method has associated smoothing or complexity param
 - Magnitude of penalty
 - Width of kernel (defining "local")
 - Number of basis functions
 - ...

- Bias-variance tradeoff

- Will explore methods for choosing smoothing parameters
What you should know

- What to report when data-generating mechanism is:
 - Known (optimal prediction)
 - Unknown and constrained to a specified model + loss fcn

- Example loss functions for
 - Continuous RVs
 - General RVs

- Goals of parametric vs. nonparametric methods

- Bias-variance tradeoff

- Measures of performance of estimators