Module 1: Nonparametric Preliminaries

LASSO cont’d

fMRI Prediction Subtask

- **Goal:** Predict semantic features from fMRI image

Features of word

\[\hat{\beta} = (X'X)^{-1} X'Y \]

\[X \]

\[X_i \]

\[\cdots \]

\[X_p \]

\[\begin{bmatrix} X_i \\ \vdots \\ X_p \end{bmatrix} \rightarrow Y_{ij} \]

\[j \text{th semantic feature} \]

\[\text{# training examples} \]

\[p \gg n \]

\[\text{p > 0 voxels} \]

\[\text{20,000} \]
Regularization in Linear Regression

- Overfitting usually leads to very large parameter choices, e.g.:
 \[-2.2 + 3.1 \, X - 0.30 \, X^2\]
 \[-1.1 + 4,700,910.7 \, X - 8,585,638.4 \, X^2 + \ldots\]

- Regularized or penalized regression aims to impose a "complexity" penalty by penalizing large weights
 - "Shrinkage" method

Ridge Regression

- Ameliorating issues with overfitting:

- New objective:
 \[
 \min_\beta \sum_{i=1}^n (y_i - (\beta_0 + \beta^T X_i))^2 + \lambda \lVert \beta \rVert_2^2
 \]

 - Don’t penalize intercept
 - Strength of penalty
 - Regularization of weights
 - Minimize \(RSS(\beta) \)
 - s.t. \(\lVert \beta \rVert_2^2 \leq S \)
Variable Selection

- Ridge regression: Penalizes large weights

- What if we want to perform “feature selection”?
 - E.g., Which regions of the brain are important for word prediction?
 - Can’t simply choose predictors with largest coefficients in ridge solution
 - Computationally impossible to perform “all subsets” regression

- Try new penalty: Penalize non-zero weights
 - Penalty: \[L_1 \sum_j |\beta_j| \]
 - Leads to sparse solutions
 - Just like ridge regression, solution is indexed by a continuous param \(\lambda \)

LASSO Regression

- LASSO: least absolute shrinkage and selection operator

- New objective:
 \[\min_{\beta} \left(\sum_i (y_i - \beta_0 - \beta_j x_i)^2 + \lambda \sum_j |\beta_j| \right) \]
 \[\text{s.t. } \sum_j |\beta_j| \leq B \]
Geometric Intuition for Sparsity

\[F(\beta) = \text{RSS}(\beta) + \lambda \| \beta \|_1 \]

Picture of Lasso and Ridge regression

\[\beta \]

Soft Threshholding

- To see why LASSO results in sparse solutions, look at conditions that must hold at optimum
 - look at \(\beta_j \) ... do this for all \(j \) => set of simultaneous equations
 - \(L_1 \) penalty \(\| \beta \|_1 \) is not differentiable whenever \(\beta_j = 0 \)
 - Look at subgradient...
Subgradients of Convex Functions

- Gradients lower bound convex functions:
 \[\frac{F(y) - F(x)}{y - x} \geq \nabla F(x) \]
 \[\Rightarrow F(y) \geq F(x) + \nabla F(x) \cdot (y - x) \]

- Gradients are unique at \(x \) if function differentiable at \(x \)

- Subgradients: Generalize gradients to non-differentiable points:
 - Any plane that lower bounds function:
 \[\text{For } |x_j|: \forall e \in [-1, 1] \]
 \[\forall e \ n \text{d}F(x) \text{ subgrad. if } F(y) \geq F(x) + e(y - x) \]

Soft Thresholding

- Gradient of RSS term:
 \[\frac{\partial}{\partial \beta_j} \text{RSS}(\beta) = a_j \beta_j - c_j \]

- Subgradient of full objective:
 \[\partial \beta_j F(\beta) : (a_j \beta_j - c_j) + \lambda \beta_j \| \beta \|_1 \]
 \[= \begin{cases}
 a_j \beta_j - c_j - \lambda & \beta_j < 0 \\
 [c_j - \lambda, -c_j + \lambda] & \beta_j = 0 \\
 a_j \beta_j - c_j + \lambda & \beta_j > 0
 \end{cases} \]
Soft Threshholding

- Set subgradient = 0:
 \[\partial_{\beta_j} F(\beta) = \begin{cases}
 a_j \beta_j - c_j - \lambda & \beta_j < 0 \\
 [-c_j - \lambda, -c_j + \lambda] & \beta_j = 0 \\
 a_j \beta_j - c_j + \lambda & \beta_j > 0
 \end{cases} \]

 - If \(\beta_j < 0 \):
 \[a_j \beta_j - c_j = 0 \Rightarrow \beta_j = \frac{c_j}{a_j} \leq 0 \Rightarrow c_j < \lambda \]
 If strong neg. corr., then \(\hat{\beta}_j < 0 \)

 - If \(\beta_j > 0 \):
 \[a_j \beta_j - c_j + \lambda = 0 \Rightarrow \beta_j = \frac{c_j - \lambda}{a_j} > 0 \Rightarrow c_j > \lambda \]
 If strong pos. corr., then \(\hat{\beta}_j > 0 \)

 - If \(\beta_j = 0 \):
 \[\lambda < c_j < \lambda \]
 if not strong corr., then \(\hat{\beta}_j = 0 \)

- The value of \(c_j = 2 \sum_{i=1}^{N} x_i^j (y_i - \hat{x}_{-j}^j \hat{x}_{-j}^j) \) constrains \(\beta_j \)

Soft Threshholding

\[\hat{\beta}_j = \begin{cases}
 (c_j + \lambda)/a_j & c_j < -\lambda \\
 0 & c_j = -\lambda \\
 (c_j - \lambda)/a_j & c_j > \lambda
 \end{cases} = \text{sign}(c_j) \left(\frac{|c_j| - \lambda}{a_j} \right)_+ \]

- If \(\lambda^T X = 1 \):
 \[\hat{\beta}_{\text{ridge}} = \frac{R_{\text{ridge}}}{1 + \lambda} \]

 \[\hat{\beta}_{\text{lasso}} = \text{sign}(\hat{\beta}_{\text{ridge}}) \left(\frac{|c_j| - \lambda}{a_j} \right)_+ \]

- In lasso, all coeff. \(\hat{\beta}_{\text{lasso}} \) are shrunk relative to \(\hat{\beta}_{\text{ridge}} \)

From Kevin Murphy textbook
Coordinate Descent

- Given a function $F(\beta)$
 - Want to find minimum $\beta^* = \min_{\beta} F(\beta) \leftarrow F(\beta_1, \ldots, \beta_p)$
- Often, hard to find minimum for all coordinates, but easy for one coordinate
- Coordinate descent:
 - while not converged
 - pick coord. j
 - $\beta_j \leftarrow \min_{b} F(\beta_1, \ldots, \beta_{j-1}, b, \beta_{j+1}, \ldots, \beta_p)$
- How do we pick a coordinate?
 - Round robin, randomly, smartly, ...
- When does this converge to optimum?
 - e.g. strongly convex, separability

Stochastic Coordinate Descent for LASSO (aka Shooting Algorithm)

- Repeat until convergence
 - Pick a coordinate j at random
 - Set: $\hat{\beta}_j = \begin{cases}
 \frac{(c_j + \lambda)}{a_j} & c_j < -\lambda \\
 0 & c_j \in [-\lambda, \lambda] \\
 \frac{(c_j - \lambda)}{a_j} & c_j > \lambda
 \end{cases}
 = \text{sign}(c_j) \frac{(|c_j| - \lambda)^+}{a_j}$
- Where: $c_j = 2 \sum_{i=1}^{N} (y_i - \hat{\beta}_j x_i)$
- For convergence rates, see Shalev-Shwartz and Tewari 2009
- Other common technique = LARS
 - Least angle regression and shrinkage, Efron et al. 2004
Recall: Ridge Coefficient Path

Typical approach: select λ using cross validation

Now: LASSO Coefficient Path

Sols are sparse for any given λ
LASSO Example

<table>
<thead>
<tr>
<th>Term</th>
<th>Least Squares</th>
<th>Ridge</th>
<th>Lasso</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>2.465</td>
<td>2.452</td>
<td>2.468</td>
</tr>
<tr>
<td>β_1</td>
<td>0.680</td>
<td>0.420</td>
<td>0.533</td>
</tr>
<tr>
<td>β_2</td>
<td>0.263</td>
<td>0.238</td>
<td>0.169</td>
</tr>
<tr>
<td>. age</td>
<td>-0.141</td>
<td>-0.046</td>
<td></td>
</tr>
<tr>
<td>. lbph</td>
<td>0.210</td>
<td>0.162</td>
<td>0.002</td>
</tr>
<tr>
<td>. svi</td>
<td>0.305</td>
<td>0.227</td>
<td>0.094</td>
</tr>
<tr>
<td>. lcp</td>
<td>-0.288</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>. gleason</td>
<td>-0.021</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>. pgg45</td>
<td>0.267</td>
<td>0.133</td>
<td></td>
</tr>
</tbody>
</table>

From Rob Tibshirani slides

Sparsistency

- Typical Statistical Consistency Analysis:
 - Holding model size (p) fixed, as number of samples (n) goes to infinity, estimated parameter goes to true parameter:
 $\hat{\Theta} \to \Theta^*$ as $n \to \infty$
 - Here we want to examine $p >> n$ domains
 - Let both model size p and sample size n go to infinity!
 - Hard case: $n = k \log p$
 - n grows slowly relative to p
Sparsistency

- Rescale LASSO objective by n:
 \[
 \min_{\beta} \frac{1}{n} RSS(\beta) + \lambda_n \sum_j |\beta_j|
 \]

- Theorem (Wainwright 2008, Zhao and Yu 2006, …):
 - Under some constraints on the design matrix X, if we solve the LASSO regression using
 \[
 \lambda_n > \frac{2}{n} \sqrt{2 \log p}
 \]
 Then for some $c_1 > 0$, the following holds with at least probability
 \[
 1 - 4 \exp \left(-c_1 n \lambda_n^2 \right) \rightarrow 1:
 \]
 - The LASSO problem has a unique solution with support contained within the true support
 $S(\hat{\beta}_{\text{LASSO}}) \subseteq S(\beta^*)$
 - If $\min_{j \in S(\beta^*)} |\beta_j^*| > c_2 \lambda_n$, for some $c_2 > 0$, then $S(\hat{\beta}) = S(\beta^*)$

Comments

- In general, can’t solve analytically for GLM (e.g., logistic reg.)
 - Gradually decrease λ and use efficiency of computing $\hat{\beta}(\lambda_k)$ from $\hat{\beta}(\lambda_{k-1})$ = warm-start strategy
 - See Friedman et al. 2010 for coordinate ascent + warm-starting strategy

- If $n > p$, but variables are correlated, ridge regression tends to have better predictive performance than LASSO (Zou & Hastie 2005)
 - Elastic net is hybrid between LASSO and ridge regression
 \[
 ||y - X\hat{\beta}||_2^2 + \lambda_1 \sum_j |\hat{\beta}_j| + \lambda_2 ||\hat{\beta}||_2^2
 \]
 (still some issues, but other solns)
Fused LASSO

- Might want coefficients of neighboring voxels to be similar
- How to modify LASSO penalty to account for this?

Graph-guided fused LASSO
- Assume a 2d lattice graph connecting neighboring pixels in the fMRI image
- Penalty:

\[\|y - X\beta\|^2 + \lambda_1 \sum_{j \in E} |\beta_j| + \lambda_2 \sum_{(j, k) \in E} |\beta_j - \beta_k| \]

A Bayesian Formulation

- Consider a model with likelihood

\[y_i | \beta \sim N(\beta_0 + x_i^T \beta; \sigma^2) \]

and prior

\[\beta_j \sim \text{Lap}(\beta_j; \lambda) \]

where

\[\text{Lap}(\beta_j; \lambda) = \frac{\lambda}{2} e^{-\lambda |\beta_j|} \]

- For large \(\lambda \)

more peaked around 0

- LASSO solution is equivalent to the mode of the posterior
- Note: posterior mode ≠ posterior mean in this case

any given posterior sample is not sparse, but it will be penalized like in ridge.

There is no closed-form for the posterior. Rely on approx. methods.
Reading

- Hastie, Tibshirani, Friedman: 3.4, 3.8.6

What you should know

- LASSO objective
- Geometric intuition for differences between ridge and LASSO solutions
- How LASSO performs soft thresholding
- Shooting algorithm
- Idea of sparsity
- Ways in which other L1 and L1-Lp objectives can be encoded
 - Elastic net
 - Fused LASSO