Module 1: Nonparametric Preliminaries

Task 1: Regression

- Assume a sample \((x_1, y_1), \ldots, (x_n, y_n)\)
- Model: \(y_i = f(x_i) + \epsilon_i\) \(E[\epsilon_i] = 0\)

- Task involves estimating the function \(f\)
- Goals of nonparametric approach:
 - Make few assumptions about \(f\)
 - Use a large number of parameters, but constrained in some way to avoid overfitting the data
 - Complexity can grow with the sample size
Parametric Regression

- **Parametric** inference assumes parametric form for $f(x)$

 $f(x) = \beta^T x$

 e.g., $f(x)$ is indexed by param. β

- Advantages:
 - Efficient estimation
 - Concise summarization

 e.g., LS est. of β, $\hat{\beta}_n$, leads to an est. of f

- What is the right parametric form for $f(x)$?
 Should it change w/ sample size?

Model Complexity

- How complex of a function should we choose?
 - To increase flexibility, using many parameters is attractive
 - Reduce bias
 - However, wide prediction intervals…
 - Fixed dataset contains a limited amt. of info
 - Leads to wild predictions
Example: Polynomial Regression

- For added flexibility, allow for high order polynomial, right?

\[y_i = \sum_{j=0}^{p} b_j x_i^j + \epsilon_i \]

Not always good to add parameters

high bias, low var

Example: Polynomial Regression

- For added flexibility, allow for high order polynomial, right?

Sensitive to small changes in data

High order = low bias, but high var

How do we assess an estimator \(\hat{f} \)?

low bias, high var
Measuring Predictive Performance

- Having chosen a model, how do we assess its performance?
- Assume estimate $\hat{f}_n(\cdot)$ based on training data y_1, \ldots, y_n
- The **generalization error** provides a measure of predictive performance

$$GE(\hat{f}_n) = E_{Y,X} \left[L(Y, \hat{f}_n(X)) \right]$$

- Assume L_2 loss
- Averaging over repeat training sets $Y_n = Y_1, \ldots, Y_n$ we get the **predictive risk** at x^*

$$E_{Y^*, Y_n} \left[(Y^* - \hat{f}_n(x^*))^2 \right] = E_{Y^*, Y_n} \left[(Y^* - \hat{f}_n(x^*))^2 \right] + 2E_{Y^*, Y_n} \left[(Y^* - \hat{f}_n(x^*)) \left(\hat{f}_n(x^*) - \hat{f}_n(x^*) \right) \right]$$

$$\text{PR}(x) = \sigma^2 + \text{MSE}(\hat{f}_n(x^*))$$

- Recall $\text{MSE}[\hat{f}_n(x)] = \text{bias}(\hat{f}_n(x))^2 + \text{var}(\hat{f}_n(x))$
Measuring Predictive Performance

- Finally, let’s average over covariates x

 - **Integrated MSE**
 \[
 \int \text{MSE}(\hat{f}_n(x)) p(x) \, dx
 \]
 summary over all inputs

 - **Average MSE**
 \[
 \frac{1}{n} \sum_{i=1}^{n} \text{MSE}(\hat{f}_n(x_i))
 \]

- Note: \(\text{avg. pred. risk} = \sigma^2 + \text{avg. MSE} \)

 - Monte Carlo est:
 \[x_i \sim p \quad i = 1, \ldots, n \]

Bias-Variance Tradeoff

- Minimizing risk = balancing bias and variance

- Note: \(f(x) \) is unknown, so cannot actually compute MSE
In Practice…

- Minimizing risk = balancing bias and variance

![Graph showing model complexity vs. prediction error](image)

From Hastie, Tibshirani, Friedman

More on Nonparam Regression

- Often framed as learning functions with a complexity penalty
 - Regular behavior in small neighborhoods of the input
 - E.g., locally linear or low-order polynomial...estimator results from averaging over these local fits

- Choice of neighborhood = strength of constraint
 - Large neighborhood can lead to linear fit (very restrictive) whereas small neighborhoods can lead to interpolation (no restriction)
More on Nonparam Regression

- Different restrictions lead to different nonparametric approaches
 - Roughness penalty → splines
 - Weighting data locally → kernel methods
 - Etc.

- Each method has associated smoothing or complexity param
 - Magnitude of penalty
 - Width of kernel (defining “local”)
 - Number of basis functions
 - …

- Bias-variance tradeoff

- Will explore methods for choosing smoothing parameters

Reading

- Wakefield: 10.3-10.4
- Hastie, Tibshirani, Friedman: 7.1-7.3
What you should know

- What to report when data-generating mechanism is:
 - Known (optimal prediction)
 - Unknown and constrained to a specified model + loss fcn

- Example loss functions for
 - Continuous RVs
 - General RVs

- Goals of parametric vs. nonparametric methods

- Bias-variance tradeoff

- Measures of performance of estimators

Module 1: Nonparametric Preliminaries

Review of Regression, Linear Smoothers

STAT/BIOSTAT 527, University of Washington
Emily Fox
April 3rd, 2014
fMRI Prediction Subtask

- **Goal:** Predict semantic features from fMRI image

![Features of word](image)

Linear Regression – review

- **Model:**
 \[y_i = \sum_{j=1}^{p} \beta_j x_{ij} + \epsilon_i \quad \text{for } i = 1, \ldots, n \]
 \[= x_i^T \beta + \epsilon_i \]
 \[E(\epsilon_i) = 0, \quad \text{var}(\epsilon_i) = \sigma^2 \]
 \[x_{i1} = 1 \] for intercept

- **Design matrix:**
 \[X = \begin{pmatrix}
 x_{11} & x_{12} & \cdots & x_{1p} \\
 \vdots & \vdots & \ddots & \vdots \\
 x_{n1} & x_{n2} & \cdots & x_{np}
 \end{pmatrix} \]

- **Rewrite in matrix form:**
 \[(y_1, \ldots, y_n) \quad y = X \beta + \epsilon \]
Least Squares

- **Least squares estimation:**
 - Minimize residual sum of squares
 \[\hat{\beta} = \arg\min_{\beta} \left(y - X\beta \right)^T \left(y - X\beta \right) = \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 \]
 \[\frac{1}{2} \text{RSS}(\beta) = \frac{1}{2} \beta^T (X^T X) \beta - \beta^T X^T y + \text{const. wrt } \beta \]
 - Take gradient and set = 0
 \[\nabla_{\beta} \frac{1}{2} \text{RSS}(\beta) = (X^T X) \beta - X^T y = 0 \]
 \[\Rightarrow \hat{\beta}^{LS} = (X^T X)^{-1} X^T y \]

- In Gaussian case, LS est. = maximum likelihood est.

Fitted Values

- **Fitted values**
 \[\hat{\beta}^{LS} = (X^T X)^{-1} X^T y \]
 \[\hat{f}_n = X \hat{\beta}^{LS} = Ly \]

- **Number of parameters**
 \[p = \text{tr}(L) \]
 \[\text{tr}(X(X^T X)^{-1} X^T) = \text{tr}(X^T X)^{-1} \text{tr}(X^T X) = \text{tr}(I_p) \]

- For any \(x \), we can write
 \[\hat{f}_n(x) = l(x)^T y = \sum_{i=1}^{n} l_i(x) y_i \]
 where \(l(x) = x (X^T X)^{-1} X^T \) all \(x_{ij} \)'s from training data
Linear Smoothers

- Definition: \(\hat{f}_n \) of \(f \) is a **linear smoother** if, for each \(x \), there exists
 \[
 \ell(x) = (\ell_1(x), \ldots, \ell_n(x))^T
 \]
 such that
 \[
 \hat{f}_n(x) = \sum_{i=1}^n \ell_i(x)y_i
 \]

- Matrix form
 - Fitted values
 - Smoothing or "hat" matrix
 - Effective degrees of freedom:
 \[
 \gamma = tr(L)
 \]

Note 1:

A linear smoother does **not** imply that \(f(x) \) is linear in \(x \)

Note 2:

If \(Y_i = c \) for all \(i \), then \(\hat{f}_n(x) = c \) for all \(x \)

Solved during SLAM quiz

©Emily Fox 2014
fMRI Prediction Subtask

- **Goal:** Predict semantic features from fMRI image

\[\hat{\beta} \times = (X^T X)^{-1} X^T y \]

- Rank Deficient

\[n \gg p \]

- # training examples

\[p = \# \text{voxels} = 70,000 \]
Regularization in Linear Regression

- Overfitting usually leads to very large parameter choices, e.g.:

 \[-2.2 + 3.1 X - 0.30 X^2\]
 \[-1.1 + 4,700,910.7 X - 8,585,638.4 X^2 + \ldots\]

- Regularized or penalized regression aims to impose a "complexity" penalty by penalizing large weights

 "Shrinkage" method

Ridge Regression

- Ameliorating issues with overfitting:

 New objective:

 \[
 \min_{\beta} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta^T x_i))^2 + \lambda \|\beta\|_2^2
 \]

 \[
 \min \text{RSS}(\beta) \quad \text{s.t.} \quad \|\beta\|_2^2 \leq S
 \]
Ridge Regression

- New objective:
 \[\hat{\beta}_{ridge} = \arg \min_{\beta} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta^T x_i))^2 + \lambda ||\beta||_2 \]

- Reformulate:
 \[\frac{1}{2} F(\beta) = \frac{1}{2} \beta^T (X^T X) \beta - \beta^T X^T y + \text{const} \]

- Set gradient = 0
 \[\hat{\beta}_{ridge} = (X^T X + \lambda I)^{-1} X^T y \]

- Linear smoother!!
 \[f_{ridge} = X \hat{\beta}_{ridge} = L y \quad L = X(X^T X + \lambda I)^{-1} X^T \]

Ridge Regression

- Solution is indexed by the regularization parameter \(\lambda \)
- Larger \(\lambda \)
 - high reg.
- Smaller \(\lambda \)
 - low reg.
- As \(\lambda \to 0 \)
 - \(\hat{\beta}_{ridge} \to \hat{\beta}_{ls} \)
- As \(\lambda \to \infty \)
 - \(\hat{\beta}_{ridge} \to 0 \)

\[\hat{\beta}_{ridge} = \arg \min_{\beta} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta^T x_i))^2 + \lambda ||\beta||_2 \]
Shrinkage Properties

\[\hat{\beta}_{\text{ridge}} = (X^T X + \lambda I)^{-1} X^T y \]

- If orthogonal covariates: \[X^T X = I \]
 \[\hat{\beta}_{\text{ridge}} = \frac{\hat{\beta}_{\text{ls}}}{1 + \lambda} v_j \]

- Effective degrees of freedom:
 \[\nu = \text{tr}(L) = \text{tr}(X (X^T X + \lambda I)^{-1} X^T) \]

Ridge Coefficient Path

Typical approach: select \(\lambda \) using cross validation (CV)
A Bayesian Formulation

- Consider a model with likelihood
 \[y_i \mid \beta \sim N(\beta_0 + x_i^T \beta, \sigma^2) \]
 and prior
 \[\beta \sim N\left(0, \frac{\sigma^2}{\lambda} I_p\right) \]
- For large \(\lambda \)
 - Prior peaked around \(\beta = 0 \)
 - Penalising \(\beta \) far from 0
- The posterior is
 \[\beta \mid y \sim N\left(\hat{\beta}^{\text{ridge}}, \sigma^2(X^TX + \lambda I)^{-1}X^TX\sigma^2(X^TX + \lambda I)^{-1}\right) \]
 \[\hat{\beta}^{\text{MAP}} = \hat{\beta}^{\text{ridge}} \]

Variable Selection

- Ridge regression: Penalizes large weights
- What if we want to perform “feature selection”?
 - E.g., Which regions of the brain are important for word prediction?
 - Can’t simply choose predictors with largest coefficients in ridge solution
 - Computationally impossible to perform “all subsets” regression
 - Stepwise procedures are sensitive to data perturbations and often include features with negligible improvement in fit
- Try new penalty: Penalize non-zero weights
 - Penalty:
 \[\ell_1 \mid \beta \mid_1 = \sum_j \mid \beta_j \mid \]
 - Leads to sparse solutions
 - Just like ridge regression, solution is indexed by a continuous param \(\lambda \)
LASSO Regression

- **LASSO**: least absolute shrinkage and selection operator

- New objective:

\[
\min_{\beta} \sum_{i=1}^{n} \left(y_i - (\beta_0 + \beta^T x_i) \right)^2 + \lambda \| \beta \|_1
\]

\[
\implies \min_{\beta} \text{RSS}(\beta) \quad \text{s.t.} \quad \| \beta \|_1 \leq B
\]

LASSO Solutions

- The LASSO solution is **nonlinear** in \(y\)... **not a linear smoother**
 - Degrees of freedom cannot be computed as before
 - Many recent studies on this (e.g., Zou et al. 2007, Tibshirani & Taylor 2011)
 - Standard errors via the bootstrap

- Efficient algorithms exist for solving
 - Will return to this next lecture
Reading

- Hastie, Tibshirani, Friedman: 3.2 (up to 3.2.3), 3.4
- Wasserman: 5.2

What you should know

- Linear regression
 - Least squares solution
 - Fitted values
- Definition of a linear smoother
- Ridge objective
 - L2 penalized regression solution
- LASSO objective
- Intuition for differences between ridge and LASSO solutions