Tutorial on Parallel Programming in R

Hana Ševčíková

Working Group on Model-Based Clustering, 02-04-05
University of Washington
hana@stat.washington.edu

http://www.stat.washington.edu/hana
Setup

Requirements:

- Hardware cluster
Setup

Requirements:

- Hardware cluster
- PVM (MPI)
Setup

Requirements:

- Hardware cluster
- PVM (MPI)
- RPVM (Rmpi)
Setup

Requirements:

- Hardware cluster
- PVM (MPI)
- RPVM (Rmpi)
- R packages for higher level parallel programming: snow + snowFT
Setup

Requirements:

- Hardware cluster
- PVM (MPI)
- RPVM (Rmpi)
- R packages for higher level parallel programming: snow + snowFT
- R packages for distr. random number generation: rlecuyer, rsprng
PVM Setup

Setting environment variables in your `.cshrc` (.bashrc,...) file:

```
setenv PVM_ROOT /usr/lib/pvm3
setenv PVM_ARCH LINUX
set path=( $path $PVM_ROOT/lib
            $PVM_ROOT/lib/`$PVM_ARCH`
            $PVM_ROOT/bin/`$PVM_ARCH` )  # in 1 line
setenv PVM_RSH /usr/bin/ssh
setenv PVM_EXPORT LD_LIBRARY_PATH:PATH
```
PVM Setup

Setting environment variables in your .cshrc (.bashrc,...) file:
- setenv PVM_ROOT /usr/lib/pvm3
- setenv PVM_ARCH LINUX
- set path=($path $PVM_ROOT/lib
 $PVM_ROOT/lib/$PVM_ARCH $PVM_ROOT/bin/$PVM_ARCH) # in 1 line
- setenv PVM_RSH /usr/bin/ssh
- setenv PVM_EXPORT LD_LIBRARY_PATH:PATH

Check:
 pvm
 pvm> quit
RPVM Setup

startpvm.R
RPVM Setup

```
startpvm.R

library(rpvm)
hostfile <- paste(Sys.getenv("HOME"),
                  ".pvm_hosts", sep="")
.PVM.start.pvmd(hostfile)
.PVM.config()
```
RPVM Setup

```
startpvm.R

library(rpvm)

hostfile <- paste(Sys.getenv("HOME"),
                   "/.pvm_hosts", sep="")

.PVM.start.pvmd(hostfile)

.PVM.config()

.pvm_hosts (in $HOME directory)
```
RPVM Setup

```r
library(rpvm)
hostfile <- paste(Sys.getenv("HOME"),
                 
                 
                 
                 "./.pvm_hosts",sep="")

.PVM.start.pvmd(hostfile)
.PVM.config()

.pvm_hosts (in $HOME directory)
  * ep=/net/home/hana/lib/rpvm  # optional,
    # dir where slaveR.sh resides, if local
  mos1.csde.washington.edu
  mos2.csde.washington.edu
```
Set the environment variable $\texttt{R_LIB}$ to directory with your local packages. E.g. in $\texttt{.cshrc}$:

```bash
csetenv R_LIBS /net/home/hana/lib/inst
```
RPVM Setup (cont.)

- Set the environment variable `R_LIB` to directory with your local packages. E.g. in `.cshrc`:
  ```
  setenv R_LIBS /net/home/hana/lib/inst
  ```

- Halt your PVM deamon (`pvm> halt`, or in XPVM).
Set the environment variable `R_LIB` to directory with your local packages. E.g. in `.cshrc`:

```
setenv R_LIBS /net/home/hana/lib/inst
```

Halt your PVM deamon (`pvm> halt`, or in XPVM).

Run `startpvm.R`.
RPVM Setup (cont.)

- Set the environment variable `R_LIB` to directory with your local packages. E.g. in `.cshrc`:
  ```
  setenv R_LIBS /net/home/hana/lib/inst
  ```
- Halt your PVM daemon (`pvm> halt`, or in XPVM).
- Run `startpvm.R`.
- Check result in XPVM.
SNOW: Simple Network of Workstations

(L. Tierney, A. Rossini, M. Na Li, 2003)

higher level framework for simple parallel jobs
SNOW: Simple Network of Workstations

(L. Tierney, A. Rossini, M. Na Li, 2003)

- higher level framework for simple parallel jobs
- communication: via socket, rpvm or rmpi
SNOW: Simple Network of Workstations

(L. Tierney, A. Rossini, M. Na Li, 2003)

- higher level framework for simple parallel jobs
- communication: via socket, rpvm or rmpi
- based on master-slave model
SNOW: Simple Network of Workstations

(L. Tierney, A. Rossini, M. Na Li, 2003)

- higher level framework for simple parallel jobs
- communication: via socket, rpvm or rmpi
- based on master-slave model
- one call creates the cluster (makeCluster(size))
SNOW: Simple Network of Workstations

(L. Tierney, A. Rossini, M. Na Li, 2003)

- higher level framework for simple parallel jobs
- communication: via socket, rpvm or rmpi
- based on master-slave model
- one call creates the cluster (makeCluster(size))
- automatic handling of parallel random number generator – rlecuyer, rsprng
 (clusterSetupRNG(...))
SNOW: Simple Network of Workstations

(L. Tierney, A. Rossini, M. Na Li, 2003)

- higher level framework for simple parallel jobs
- communication: via socket, rpvm or rmpi
- based on master-slave model
- one call creates the cluster \(\text{makeCluster}(\text{size})\)
- automatic handling of parallel random number generator – rlecuyer, rsprng \(\text{clusterSetupRNG}(\ldots)\)
- one call for repeated evaluation of an arbitrary function on the cluster
Execute function `fun` 10 times on 5 nodes

1. `clusterApply(cl, rep(2,5), fun)`

 - `S4S5 S3 S2 S1 M`
 - `start end`

 - `runtime depends on the slowest node, results reproducible`

2. `clusterApplyLB(cl, rep(1,10), fun)`

 - `S4S5 S3 S2 S1 M start`
 - `13 5 24 6 7 8 9 end`
 - `faster but not reproducible`
SNOW Example

Execute function \texttt{fun} 10 times on 5 nodes

1. \texttt{clusterApply (cl, rep(2,5), fun)}
SNOW Example

Execute function `fun` 10 times on 5 nodes

1. `clusterApply(cl, rep(2,5), fun)`

![Diagram of parallel execution on 5 nodes: M, S1, S2, S3, S4, S5. Each node starts with a task and ends with a task. The time line shows the start and end times for each node. The diagram illustrates the parallel execution with tasks distributed across nodes.](image)
Execute function \texttt{fun} 10 times on 5 nodes

1. \texttt{clusterApply(cl, rep(2,5), fun)}

- runtime depends on the slowest node, results reproducible
SNOW Example

Execute function \texttt{fun} 10 times on 5 nodes

1. \texttt{clusterApply} \((cl, \text{rep}(2,5), \text{fun})\)

 Runtime depends on the slowest node, results reproducible

2. \texttt{clusterApplyLB} \((cl, \text{rep}(1,10), \text{fun})\)
SNOW Example

Execute function \texttt{fun} 10 times on 5 nodes

1. \texttt{clusterApply (cl, rep(2,5), fun)}

 - runtime depends on the slowest node, results reproducible

2. \texttt{clusterApplyLB (cl, rep(1,10), fun)}

 - faster but not reproducible
Execute function \texttt{fun} 10 times on 5 nodes

1. \texttt{clusterApply (cl, rep(2,5), fun)}

 \begin{itemize}
 \item runtime depends on the slowest node, results reproducible
 \end{itemize}

2. \texttt{clusterApplyLB (cl, rep(1,10), fun)}

 \begin{itemize}
 \item faster but not reproducible
 \end{itemize}
snowFT: Fault Tolerant SNOW

(H. Ševčíková, A. Rossini, 2004)

- Built on SNOW.
snowFT: Fault Tolerant SNOW

(H. Ševčíková, A. Rossini, 2004)

- Built on SNOW.
- Load balancing AND reproducibility:
 one RN stream associated with one replicate.
snowFT: Fault Tolerant SNOW

(H. Ševčíková, A. Rossini, 2004)

- Built on SNOW.
- Load balancing AND reproducibility: one RN stream associated with one replicate.
- Fault tolerance: failure detection and recovery in master’s waiting time.
snowFT: Fault Tolerant SNOW

(H. Ševčíková, A. Rossini, 2004)

- Built on SNOW.
- Load balancing AND reproducibility: one RN stream associated with one replicate.
- Fault tolerance: failure detection and recovery in master’s waiting time.
- Computation transparency (define a print function, file .proc, .proc_fail).
snowFT: Fault Tolerant SNOW

(H. Ševčíková, A. Rossini, 2004)

- Built on SNOW.
- Load balancing AND reproducibility: one RN stream associated with one replicate.
- Fault tolerance: failure detection and recovery in master’s waiting time.
- Computation transparency (define a print function, file .proc, .proc_fail).
- Dynamic cluster resizing (file .clustersize).
snowFT: Fault Tolerant SNOW

(H. Ševčíková, A. Rossini, 2004)

- Built on SNOW.
- Load balancing AND reproducibility: one RN stream associated with one replicate.
- Fault tolerance: failure detection and recovery in master’s waiting time.
- Computation transparency (define a print function, file .proc, .proc_fail).
- Dynamic cluster resizing (file .clustersize).
- Easy to use.
Only one function needed for all features.
snowFT: Usage

Only one function needed for all features.

`performParallel (count, vector_of_length_n, fun, ...)`
snowFT: Usage

Only one function needed for all features.

```r
performParallel (count, vector_of_length_n, fun, ...)
- creates a cluster of size `count`
```
snowFT: Usage

Only one function needed for all features.

`performParallel (count, vector_of_length_n, fun, ...)`

- creates a cluster of size `count`
- [initializes each node with a given function]
snowFT: Usage

Only one function needed for all features.

`performParallel (count, vector_of_length_n, fun, ...)`

- creates a cluster of size `count`
- [initializes each node with a given function]
- [initializes RNG (rlecuyer or rsprng)]
snowFT: Usage

Only one function needed for all features.

performParallel (count, vector_of_length_n, fun, ...)

- creates a cluster of size count
- [initializes each node with a given function]
- [initializes RNG (rlecuyer or rsprng)]
- performs the actual computation on the cluster (n × fun)
snowFT: Usage

Only one function needed for all features.

performParallel (count, vector_of_length_n, fun, ...)

- creates a cluster of size count
- [initializes each node with a given function]
- [initializes RNG (rlecuyer or rsprng)]
- performs the actual computation on the cluster \(n \times \text{fun} \)
- [performs aftermath operations on each node]
snowFT: Usage

Only one function needed for all features.

`performParallel (count, vector_of_length_n, fun, ...)`

- creates a cluster of size `count`
- [initializes each node with a given function]
- [initializes RNG (rlecuyer or rsprng)]
- performs the actual computation on the cluster (`n × fun`)
- [performs aftermath operations on each node]
- stops the cluster and returns a list of results
Programming

Implement the peace of code to be run in parallel as a separate function.
Programming

- Implement the peace of code to be run in parallel as a separate function.
- Make sure that all user-defined functions that are called on slave nodes can be seen by slave.
Implement the peace of code to be run in parallel as a separate function.

Make sure that all user-defined functions that are called on slave nodes can be seen by slave.

```r
initfct <- function(){
    source(file_with_local_functions.R)
}
performParallel(..., initfun=initfct, ...)
```
Programming

- Implement the peace of code to be run in parallel as a separate function.

- Make sure that all user-defined functions that are called on slave nodes can be seen by slave.

```r
initfct <- function()
    source(file_with_local_functions.R)
}
performParallel(..., initfun=initfct, ...)

fun <- function(...) {
    localfun <- function(...) {...}
    : 
    a <- localfun (...)
}
```
Tips

Integrate a sequential and a parallel version of your code in one program.
Tips

Integrate a sequential and a parallel version of your code in one program.

```r
myprogram <- function(..., parallel=1,...) {
  if (parallel > 1) {
    require(snowFT)
    res <- performParallel(parallel, 1:n,
                            fun, myargs, ...)
  } else {
    res <- list()
    for (i in 1:n)
      res <- c(res, list(fun(i, myargs)))
  }
}
```
Always check the output of `performParallel`. It may contain error messages from slaves.
Tips (cont.)

- Always check the output of `performParallel`. It may contain error messages from slaves.
- Check the behavior of your program in XPVM.
Tips (cont.)

- Always check the output of `performParallel`. It may contain error messages from slaves.
- Check the behavior of your program in XPVM.
- Be aware of the total load of the system!!! (`mosmon`)
Tips (cont.)

- Always check the output of `performParallel`. It may contain error messages from slaves.
- Check the behavior of your program in XPVM.
- Be aware of the total load of the system!!! (`mosmon`)
 - There are other people using it.
Always check the output of `performParallel`. It may contain error messages from slaves.

Check the behavior of your program in XPVM.

Be aware of the total load of the system!!! *(mosmon)*

- There are other people using it.
- No performance gain by adding slaves if no. of processes > no. of processors.
Example 1

Estimation of fractal dimension (via variogram) of time series of size n repeated r times.
Example 1

Estimation of fractal dimension (via variogram) of time series of size n repeated r times.

$n = 50000$, $r = 100$
Example 1

Estimation of fractal dimension (via variogram) of time series of size n repeated r times.

$n = 50000, \ r = 100$

Example 1

Estimation of fractal dimension (via variogram) of time series of size \(n \) repeated \(r \) times.

\[n = 50000, \ r = 100 \]

Sequential version: \(142.2s \)

Parallel version (6 processors): \(29.0s \)

Speedup: \(4.9\)
Example 1

Estimation of fractal dimension (via variogram) of time series of size n repeated r times.

$n = 50000$, $r = 100$

Sequential version: 142.2s
Parallel version (6 processors): 29.0s
Example 1

Estimation of fractal dimension (via variogram) of time series of size n repeated r times.

$n = 50000$, $r = 100$

Sequential version: $142.2s$
Parallel version (6 processors): $29.0s$
Speedup: 4.9
Example 2

Variable selection for model-based clustering (Nema Dean).
Example 2

Variable selection for model-based clustering (Nema Dean).

1. First step: Select the best variable in terms of univariate clustering.
 \[\Rightarrow \text{Run } \text{EMclust} \text{ for } i = 1, \ldots, d_1. \]
Variable selection for model-based clustering (Nema Dean).

1. First step: Select the best variable in terms of univariate clustering.
 ⇒ Run `EMclust` for \(i = 1, \ldots, d_1 \).

2. Second step: Select the best variable in terms of bivariate clustering.
 ⇒ Run `EMclust` for \(i = 1, \ldots, d_2 \).
Example 2

Variable selection for model-based clustering (Nema Dean).

1. First step: Select the best variable in terms of univariate clustering.
 \[\Rightarrow \text{Run EMclust for } i = 1, \ldots, d_1. \]

2. Second step: Select the best variable in terms of bivariate clustering.
 \[\Rightarrow \text{Run EMclust for } i = 1, \ldots, d_2. \]

3. Iterate:
 (a) Addition step: Propose a variable for adding.
 \[\Rightarrow \text{Run EMclust for } i = 1, \ldots, d_3. \]
Variable selection for model-based clustering (Nema Dean).

1. First step: Select the best variable in terms of univariate clustering.
 \[\Rightarrow \text{Run } EMclust \text{ for } i = 1, \ldots, d_1. \]

2. Second step: Select the best variable in terms of bivariate clustering.
 \[\Rightarrow \text{Run } EMclust \text{ for } i = 1, \ldots, d_2. \]

3. Iterate:
 (a) Addition step: Propose a variable for adding.
 \[\Rightarrow \text{Run } EMclust \text{ for } i = 1, \ldots, d_3. \]
 (b) Removal step: Propose a variable for removal.
 \[\Rightarrow \text{Run } EMclust \text{ for } i = 1, \ldots, d_4. \]
Example 2 (cont.)

performParallel(min(P, d_1), 1:d_1, FirstStep, ...)

sync
performParallel(min(P, d_2), 1:d_2, AddStep, ...)

sync
performParallel(min(P, d_3), 1:d_3, AddStep, ...)

sync
performParallel(min(P, d_4), 1:d_4, RmStep, ...)

Tutorial on Parallel Programming in R – p.15
Example 2 (cont.)

```
performParallel(min(P, d_1), 1:d_1, FirstStep, ...)
  ↓
  sync
  ↓
performParallel (min(P, d_2), 1:d_2, AddStep, ...)
```
Example 2 (cont.)

```
performParallel(min(P,\(d_1\)), 1:\(d_1\), FirstStep, ...)
\downarrow
sync
\downarrow
performParallel (min(P,\(d_2\)), 1:\(d_2\), AddStep, ...)
\downarrow
sync
\downarrow
performParallel (min(P,\(d_3\)), 1:\(d_3\), AddStep, ...)
```
Example 2 (cont.)

\[
\text{performParallel}(\min(P,d_1), 1:d_1, \text{FirstStep, ...})
\]
\[
\downarrow
\]
\[
\text{sync}
\]
\[
\downarrow
\]

\[
\text{performParallel}(\min(P,d_2), 1:d_2, \text{AddStep, ...})
\]
\[
\downarrow
\]
\[
\text{sync}
\]
\[
\uparrow
\]

\[
\text{performParallel}(\min(P,d_3), 1:d_3, \text{AddStep, ...})
\]
\[
\downarrow
\]
\[
\uparrow
\]

\[
\text{performParallel}(\min(P,d_4), 1:d_4, \text{RmStep, ...})
\]
Example 2 (cont.)

Data with 15 variables:

\[d_1 = 15 \rightarrow d_2 = 14 \rightarrow d_3 = 13 \rightarrow d_4 = 2 \rightarrow \text{stop} \]
Example 2 (cont.)

Data with 15 variables:

\[d_1 = 15 \rightarrow d_2 = 14 \rightarrow d_3 = 13 \rightarrow d_4 = 2 \rightarrow \text{stop} \]

Sequential version: \[418.8s \]
Data with 15 variables:

\[d_1 = 15 \rightarrow d_2 = 14 \rightarrow d_3 = 13 \rightarrow d_4 = 2 \rightarrow \text{stop} \]

Sequential version: \[418.8s \]
Parallel version (6 processors): \[90.0s \]
Example 2 (cont.)

Data with 15 variables:

\[d_1 = 15 \rightarrow d_2 = 14 \rightarrow d_3 = 13 \rightarrow d_4 = 2 \rightarrow \text{stop} \]

Sequential version: 418.8s
Parallel version (6 processors): 90.0s
Speedup: 4.7
Example 2 (cont.)

Data with 15 variables:

\[d_1 = 15 \rightarrow d_2 = 14 \rightarrow d_3 = 13 \rightarrow d_4 = 2 \rightarrow \text{stop} \]

Sequential version: \(418.8 s\)
Parallel version (6 processors): \(90.0 s\)
Speedup: \(4.7\)

Code at www.stat.washington.edu/hana/code/example2.R
Conclusions

Parallel programming in R is VERY EASY !!!