Lecture 22 (CH 9)

We learned chi-squared test of k specific proportions in 1 pop.

\[H_0: \pi_1 = \pi_0, \pi_2 = \pi_0, \ldots, \pi_k = \pi_0 \]
\[H_1: \text{At least 1 of these is wrong.} \]

chi-sqd dist. with df = k-1

\{ \text{How does proportion of } \chi^2 = 0 \text{ (something e.g. tornadoes, } X = 1) \}
\text{vary across k categories (or k levels of a categorical var. Y)?}
\text{1 2-level X, 1 k-level Y.}

And the chi-squared test of independence:

\[H_0: X \text{ and } Y \text{ are independent} \]
\[H_1: X \text{ and } Y \text{ are not independent} \]

chi-sqd dist. with df = (k-1)(r-1)

\[X, Y = 2 \text{ Categ./Discr. r.v.s.} \]

This test is equivalent to a "test of homogeneity of population across categories", which we have skipped this quarter.

In regression we studied how does 1 (or more) continuous var. (X) affect another continuous var. (Y)?

\[X, Y = 2 \text{ Continuous var.s.} \]

How about how does 1 Categ./Discr. var. (X) affect 1 Continuous r.v. (Y)?

This question requires comparing k means, i.e.

\[M_1 = \text{mean of } Y \text{ for } X = 1, \ M_2 = \text{mean of } Y \text{ for } X = 2, \ldots M_k = \cdots K = k \]

And the question of whether X affects Y becomes

\[H_0: M_1 = M_2 = \cdots = M_k \quad (\text{Not } M_i = M_{01}, M_2 = M_{02}, \ldots) \]
\[H_1: \text{At least 2 } \mu_s \text{ are different.} \]

Once again, this method compares the mean of a continuous r.v. at different levels of a Categ./Discr. r.v.

Example: Does knowledge of religion depend on religion?
The Science of "Disestimation": The Shortcomings of Opinion Polls

Why we shouldn't put our faith in opinion polls

By Charles Seife | December 14, 2010 | 19

Average number of questions answered correctly (dots)

- Atheist/agnostic
- Jewish
- Mormon
- White evangelical Protestant
- White Catholic
- White mainline Protestant
- Nothing in particular
- Black Protestant
- Hispanic Catholic

Margin of error

\[
\text{by model 1 (e.g., regression)} \quad \text{by model 2 (e.g., neural net)}
\]

Different?

Moral: even though we are testing whether several means are equal, we must pay attention to variance! Hence the name ANOVA.
Example 2: Does fullness of note sheet have an effect on test scores?

<table>
<thead>
<tr>
<th>note-sheet fullness</th>
<th>mean test score</th>
</tr>
</thead>
<tbody>
<tr>
<td>not-so-full</td>
<td>0.6437</td>
</tr>
<tr>
<td>2</td>
<td>0.7205</td>
</tr>
<tr>
<td>3</td>
<td>0.7179</td>
</tr>
<tr>
<td>4</td>
<td>0.7201</td>
</tr>
<tr>
<td>very full</td>
<td>0.7142</td>
</tr>
</tbody>
</table>

Again, looking at means is not enough. Must also look at variance.

We are going to learn this stuff today.

Note that this test is just a generalization of the 2-sample/pop test (for comparing μ_1, μ_2) to the case of k populations.
Example 9.1 (p. 422-423)

Does data provide evidence that
- mean vibration varies across 5 types of bearings?
- mean computer speed varies across computers?
- mean detection error varies across detection algorithms?
- Are k means different?

Data: Brand 1	2	3	4	5
18.1 | | | | |
15.0 | | | | |
14.0 | | | | |
10.6 | | | | |

\[\bar{y}_1 = 13.6 \quad \bar{y}_2 = 15.7 \quad \bar{y}_3 = 13.7 \quad \bar{y}_4 = 14.7 \quad \bar{y}_5 = 13.8 \]

We are dealing with 5 pop. means.

Ho: \(\mu_1 = \mu_2 = \ldots = \mu_5 \)

H1: At least 2 \(\mu \)'s are different.

The Way ANOVA answers that question is by finding out how much of the total variability in \(y \) is within each category/pop., and how much is between the categories/psps.

Important & powerful idea
Recall the decomposition of SST from regression. Similarly,

\[S_{yy} = \frac{k}{n} \sum_{i=1}^{k} \left(\bar{y}_{ij} - \bar{y} \right)^2 \]

Grand mean

\[\bar{y} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij} = \frac{1}{n} \sum_{i=1}^{k} \left(\frac{n_i}{n} \right) \bar{y}_i \]

\[j^{th} \text{ response in the } i^{th} \text{ pop/cate} \]

\[S_{yy} = \frac{k}{n} \sum_{i=1}^{k} n_i \left(\bar{y}_i - \bar{y} \right)^2 + \frac{k}{n} \sum_{i=1}^{k} \left(\frac{n_i}{n} \right) \sum_{j=1}^{n_i} \left(y_{ij} - \bar{y}_i \right)^2 \]

\[\text{SST} = S_{\text{between group}} + S_{\text{within group}} \]

\[S_{\text{Treat}} \leftarrow \text{Treatment} \]

\[S_{\text{SSE}} \]

\[S_{\text{explained}} \leftarrow \text{Variation between groups} \]

\[S_{\text{unexplained}} \leftarrow \text{Variation within groups} \]

\[\sim \text{Sample var. of sample means} \]

\[\sim \text{Sample mean of sample variances} \]

\[\text{SS : Total} = \text{between} + \text{within} \]

\[\text{df} : n-1 = (k-1) + (n-k) \]

\[k = \# \text{ of levels in 1 factor (predictor)} \]

\[n = \# \text{ of pops.} \]

\[[\text{linear regression : } n-1 = k + [n-(k+1)] \]

\[k = \# \text{ of } y \text{'s} \]
Now, we can compare $SS_{between}$ and SS_{within}:

Theorem:

If $H_0 = \text{True}$, $F = \frac{SS_{between}/(k-1)}{SS_{within}/(n-k)} = \frac{MS_{between}}{MS_{within}}$ has an F-distribution with $df = (k-1, n-k)$.

All we need is Table VIII.

$p\text{-value} = P(F > F_{obs})$

One assumption of this theorem is that the y's in each of the k populations are normal, and that they all have the same variance, i.e., $\sigma^2_y = \sigma^2_z = \ldots = \sigma^2_k$. (Called homoscedasticity.)

Use qq plots to test this. See HW for understanding this.
Consider 5 brands of computers. A code has been run on each of the brands 6 times, and the completion times have been recorded. Here are the data:

<table>
<thead>
<tr>
<th>Brand</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\overline{y}_1 = 13.68, \quad \overline{y}_2 = 15.97, \quad 13.67, \quad 14.73, \quad 13.08
\]

\[
\text{Var. between} \quad \sigma^2 = \frac{1}{5} (11.94 + \cdots) = 14.22
\]

\[
\text{Var. within} \quad \sigma^2 = \frac{1}{5} (1.167 + \cdots) = 22.83
\]

\[
\overline{y} = \frac{\sum_i \left(\frac{n_i}{n} \right) \overline{y}_i}{6} = \frac{5}{6} (13.68) + \cdots = 14.22
\]

\[
\text{SS battlefield} = \sum_i n_i (\overline{y}_i - \overline{y})^2 = 6 (13.68 - 14.22)^2 + \cdots = 30.88
\]

\[
\text{SS within} = \sum_i \sum_j (y_{ij} - \overline{y}_i)^2 = \frac{5}{6} (n_i - 1) 5.2^2 = (6-1) (1.194)^2 + \cdots = 22.83
\]

\[
F = \frac{30.88/(5-1)}{22.83/(30-5)} = 8.45\left(\text{for df } (5-1, 30-5)\right)
\]

\[
p\text{-value} = p(F > F_{0.01}) = p(F > 8.45) < 0.001 \quad \text{Table VIII.}
\]

Conclusion: \(H_0 (\mu_1 = \mu_2 = \cdots) \text{ in favor of } H_1 \text{ (at least 2 \mu's are diff)}\)

In English: Brand has an effect on speed.

Which 2? Section 9.3

Skipped.
Most software produce an ANOVA Table (see prelab)

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Group (factor)</td>
<td>k-1</td>
<td>8S\text{between} from formula</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within Group (error)</td>
<td>n-k</td>
<td>8S\text{within}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>n-1</td>
<td>SSTotal</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the above example (from R):

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>factor</td>
<td>5-1</td>
<td>30.85</td>
<td>7.71</td>
<td>8.44</td>
<td>0.00018</td>
</tr>
<tr>
<td>Error</td>
<td>30-5</td>
<td>22.84</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30-1</td>
<td>53.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary:

1. \(Z \):
 - \(H_0: \mu = \mu_0 \)
 - \(H_1: \mu \neq \mu_0 \)
 - \(\sigma \) known/unknown
 - \(Z \) (No t), "large sample"

2. \(t \):
 - \(H_0: \theta = \theta_0 \)
 - \(H_1: \theta \neq \theta_0 \)
 - \(t \) (No Z), "large sample"

3. \(t \):
 - \(H_0: \mu_1 - \mu_2 = \Delta_0 \)
 - \(H_1: \mu_1 - \mu_2 \neq \Delta_0 \)
 - independent or paired

Chi-squared:

- \(H_0: \chi_1^2 = \chi_2^2 = \chi_3^2 = \cdots = \chi_k^2 = \chi_0^2 \)
- \(H_1: \) At least 1 is wrong

Chi-squared:

- \(H_0: \) 2 categorical variables are independent
- \(H_1: \) not
- \(2 \) pops are homogeneous w.r.t. \(k \) categories

F:

- \(H_0: \mu_1 = \mu_2 = \cdots = \mu_k \)
- \(H_1: \) at least 2 \(\bar{\mu} \)'s are different

Note that the ANOVA F-test is a generalization of the 2-sample t-test to more than 2 populations.
I have said that the F-test of k means is a generalization of the 2-sample t-test of 2 means. Here, we will see some of the math. Looking at the formulas for the F-test, specialized to k = 2, also assume \(n_1 = n_2 = n/2 \).

a) Show that \(\bar{Y} = \frac{1}{2} (\bar{Y}_1 + \bar{Y}_2) \)

b) Show that \(\text{SS}_{\text{between}} = \frac{1}{n} (\bar{Y}_1 - \bar{Y}_2)^2 \)

c) Show that \(\text{SS}_{\text{within}} = \frac{1}{2} (n-2) \left(S_1^2 + S_2^2 \right) \)

d) Show that \(F = \frac{1}{2} n \left(\frac{\bar{Y}_1 - \bar{Y}_2}{S_1^2 + S_2^2} \right) \)

(Note that in a 2-sample test of \(H_0 : \mu_1 - \mu_2 = 0 \), \(H_1 : \mu_1 - \mu_2 \neq 0 \), we have \(t = \frac{(\bar{Y}_1 - \bar{Y}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}} = \sqrt{n} \frac{\bar{Y}_1 - \bar{Y}_2}{S_1^2 + S_2^2} = \sqrt{n} \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{S_1^2 + S_2^2}} \).

and so, the F in part d) is nothing but \(t^2 \).)

hw-lect22-2

By hand or by R (see prelab)

Return to the data you collected. Take one of the continuous variables (call it \(y \)) and the categorical/discrete variable with 3 or more levels (call it \(x \)). Since \(x \) is discrete/categorical we can consider each level as a different population. E.g., if your \(x \) has 3 levels (say, \(H, M, L \)) separate the corresponding \(y \)'s into 3 categories.

a) Do 1-way ANOVA to test if any of the \(k \) populations have different means. Report the p-value, and the conclusion.

b) Note: in a previous hw, you made qq plots of the \(y \)'s in each population. Return to that work, and comment on whether their slopes are comparable (i.e., approximately equal). Recall that equal slopes means equal variances, and so this will be a way of visually checking the homoscedasticity assumption mentioned above (in the lecture notes).