Last time we arrived at the Central Limit Theorem (CLT):

Strong Version: If $X \sim$ any dist. with mean $= \mu_x$, var. $= \sigma_x^2$

Then $\bar{X} \sim N(\mu_x, \frac{\sigma_x}{\sqrt{n}})$ for large n.

which allows us to compute probs like

$$\Pr(a < \bar{X} < b) = \Pr\left(\frac{a - \mu_x}{\sigma_x/\sqrt{n}} < \frac{\bar{X} - \mu_x}{\sigma_x/\sqrt{n}} < \frac{b - \mu_x}{\sigma_x/\sqrt{n}} \right) = \Pr(a < Z < b) = \text{Table I}$$

Compare with Ch. 1 probs, which were like

$$\Pr(a < X < b) = \Pr\left(\frac{a - \mu_x}{\sigma_x} < \frac{X - \mu_x}{\sigma_x} < \frac{b - \mu_x}{\sigma_x} \right) = \Pr(a < Z < b) = \text{Table I}$$

Specific types of probs. of common interest in statistics are

$$\Pr(\bar{X} > \bar{x}_{0.05}) \text{ or } \Pr(\bar{X} < \bar{x}_{0.05}) \text{ Recall } \Pr(\bar{X} = \bar{x}_{0.05}) = 0$$

But the above procedure for computing these probs requires knowledge of the pop. mean and std. dev., μ_x, σ_x (look above!)

There are 2 ways of turning the procedure around so that it actually says something about μ_x, σ_x.

1) **Confidence Intervals** Ch. 7
2) **Hypothesis Testing (p-values)** Ch. 8

Recall our notation:

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Pop. Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{X} (sample mean) is a point estimate of μ_x (pop. mean)</td>
<td></td>
</tr>
<tr>
<td>S ("std. dev.)</td>
<td>σ_x ("std. dev.)</td>
</tr>
<tr>
<td>P ("prop.)</td>
<td>π_x ("prop.)</td>
</tr>
</tbody>
</table>
| n ("size") is not related to pop. size. For $n = \infty$, for us
The 1st way is to build a confidence interval (CI) for μ_x:

The procedure is to start with $P(-1.96 < z < 1.96) = 0.95$ with specific values of a, b, and blah. E.g.

$$P \left(-1.96 < z < 1.96 \right) = 0.95$$

$$P \left(-1.96 < \frac{x - \mu}{\sigma} < 1.96 \right) = 0.95$$

$$P \left(-1.96 \frac{s}{\sqrt{n}} < x - \mu < 1.96 \frac{s}{\sqrt{n}} \right) = 0.95$$

Confidence level:

- $x - 1.96 \frac{s}{\sqrt{n}} < \mu_x < x + 1.96 \frac{s}{\sqrt{n}}$
- Not fixed
- Random

\[0.95\% \text{ C.I. for } \mu_x: \quad \bar{x} \pm 1.96 \frac{s}{\sqrt{n}} \]

This is a random CI, because \bar{x} is random (how else would it have a sampling dist?!!)

The (observed) 95% C.I. for μ_x is

\[\bar{x}_{\text{obs}} \pm 1.96 \frac{s}{\sqrt{n}} \]

1st Interpretation: We are 95% confident that μ_x is in here.

2nd " : Below.

Often we forget saying "observed."

It's up to you to find out if we're talking about a random CI or the observed CI.
Suppose a sample of size 25 yields $\bar{x}_{obs} = 3$, $s_{obs} = 1$. What can we say about the population mean?

Suppose the population is normal ($\mu_x = 2$, $\sigma_x = 1$). What's the probability of getting an even larger sample mean?

$$\text{prob}(\bar{x} > \bar{x}_{obs}) = \text{prob}(z > \frac{3-2}{\frac{1}{\sqrt{25}}}) = \text{prob}(z > 5) \approx 0.0$$

$\bar{x} > 3$ is unlikely, if $\mu_x = 2$.

Estimate with s_x

(observed) 95% CI for μ_x:

$$\bar{x}_{obs} \pm 1.96 \cdot \frac{s_{obs}}{\sqrt{n}}$$

$$3 \pm 1.96 \cdot \frac{1}{\sqrt{25}} = 3 \pm 0.392 = (2.6, 3.4)$$

Interpret: We can be 95% confident that the true mean is in this interval.

Note: That in spite of all the probs, this interp. does not have prob. CIs have (at least) 2 interpretations.

The 2nd one (below) involves the word probability.
Note that in the last step of the derivation of the C.I. for μ_x, I dropped the pr. That is because $pr(\cdots \Rightarrow \mu_x \Rightarrow \cdots)$ does not exist, because μ_x is fixed, not random. There is a way of squeezing "probability" into the conclusions, but it has to pertain to the random C.I.

We are 95% confident that the pop. mean
is in the interval $\left(\bar{x} \pm 1.96 \frac{s_x}{\sqrt{n}} \right)$.

Equivalent interpretations of C.I.

There is a 95% prob that a random sample will yield a C.I. $\left(\bar{x} \pm 1.96 \frac{s_x}{\sqrt{n}} \right)$ that covers μ_x.

Look at the derivation of C.I.; This is obvious.

$\{ \begin{align*}
\text{Sample 1} & : \quad \bar{x} \\
\text{Sample 2} & : \quad \bar{x} \\
\end{align*} \}$

$\Rightarrow 95\%$ of these intervals cover μ_x.

\Rightarrow i.e. The prob. that a random C.I. $\left(\bar{x} \pm 1.96 \frac{s_x}{\sqrt{n}} \right)$ will include μ_x is 0.95.

If you want to say something directly about μ_x, use "confidence" not prob.

C.I.'s are all about coverage;
a 95% C.I. for μ_x is designed to cover μ_x in 95% of samples.

For the above example: (Observed) 95% CI (2.6, 3.4)
2nd interp.: There is 95% prob. that a random CI will cover μ_x.
[Q1] For the above e.g., which of the following is correct.

A) The prob that $2.6 < \mu_x < 3.4$ is 95% $\mu_x = \text{fixed}$
B) $2.6 < x_{100} < 3.4$ $\bar{x}_{100} = \text{fixed}$
C) $\mu_x - 1.96 \sigma_{\bar{x}} / \sqrt{n} < \bar{x} < \mu_x + 1.96 \sigma_{\bar{x}} / \sqrt{n}$ Defn. of CI.
D) none of the above.

Note $\Pr (2.6 < \bar{x} < 3.4) \neq 0.95$.

What about other confidence levels ($\neq 0.95$)?

E.g. 99% conf. level: "self-evident fact."

$\Pr(-2.575 < z < 2.575) = 0.99$ \[\text{Table I}\]

\[
\frac{\bar{x} - \mu_x}{\sigma_{\bar{x}} / \sqrt{n}} \Rightarrow \text{C.I. for } \mu_x : \bar{x} \pm 2.575 \frac{\sigma_{\bar{x}}}{\sqrt{n}}
\]

In general: \[\text{C.I. for } \mu_x : \bar{x} \pm z^* \frac{\sigma_{\bar{x}}}{\sqrt{n}} \] "multiplier"

where $z^* = 1.645, 1.96, 2.575, \ldots$

for conf. level = 90%, 95%, 99%, $\ldots = 1 - \alpha$

or α-level = 0.1, 0.05, 0.01, \ldots

You can either "derive" these z^* values from Table I (just like we did for the above examples), or look them up on the last line of Table IV.
WARNING:

The math is Trivial!

It's the interpretations of CI that are really difficult.

For the previous example: (Observed) 95% CI: (2.6, 3.4)

1) We can be 95% confident that the true mean is in here.

2) There is a 95% probability that a random 95% CI will cover μ.

Note that the 2nd interpretation makes no reference to (2.6, 3.4)!

Relationship between probability and confidence:

→ **Probability** acts on **random** things, like sample means.

 e.g. \(\text{prob}(\bar{x} > 3) \) is perfectly meaningful.

 \(\text{prob}(\mu > 3) \) makes no sense! \{ important \}

→ **Confidence** acts on **fixed** things, like population means.

 e.g. C.I. for \(\mu \) is perfectly meaningful.

 C.I. for \(\bar{x} \) makes no sense!
Suppose you have computed a 95% C.I. for \(\mu_x \) based on a sample of size \(n \). Your friend, however, wants to compute a 99% C.I. for \(\mu_x \). How big should his sample size (\(m \)) be in order for the two C.I.s to have the same width?

(a) It turns out that the sample std. dev., \(s \), has a normal distr. with parameters \(\sigma_x \) and \(\sigma_x/\sqrt{n} \), where \(\sigma_x \) is the pop. std. dev. Now, follow the procedure we have developed, starting from a “self-evident fact” to develop a C.I. formula for \(\sigma_x \).

(b) Suppose for a specific data set based on a sample of size 169, we have found the sample std. dev. of 3.73. Compute the 95% CI for the pop. std. dev.

(c) Provide 2 interpretations.