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Abstra
t

We present a new view of 
lustering and seg-

mentation by pairwise similarities. We inter-

pret the similarities as edge 
ows in a Markov

random walk and study the eigenvalues and

eigenve
tors of the walk's transition matrix.

This view shows that spe
tral methods for


lustering and segmentation have a proba-

bilisti
 foundation. We prove that the Nor-

malized Cut method arises naturally from

our framework and we provide a 
omplete


hara
terization of the 
ases when the Nor-

malized Cut algorithm is exa
t. Then we dis-


uss other spe
tral segmentation and 
luster-

ing methods showing that several of them are

essentially the same as NCut.

1 Introdu
tion

This paper fo
uses on pairwise (or similarity-based)


lustering and image segmentation. In 
ontrast to sta-

tisti
al 
lustering methods, that assume a probabilisti


model that generates the observed data points (or pix-

els), pairwise 
lustering de�nes a similarity fun
tion

between pairs of points and then formulates a 
rite-

rion (e.g. maximum total intra
luster similarity) that

the 
lustering must optimize. The optimality 
riteria

quantify the intuitive notion that points in a 
luster

(or pixels in a segment) are similar, whereas points in

di�erent 
lusters are dissimilar. The similarities are


onsidered as given in the 
ontext of the 
lustering al-

gorithm; in pra
ti
e (do
ument 
lustering, image seg-

mentation) �nding a \good" similarity fun
tion is part

of the art of the domain pra
titioner.

An in
reasingly popular approa
h to similarity based


lustering and segmentation is by spe
tral methods.

These methods use eigenvalues and eigenve
tors of a

matrix 
onstru
ted from the pairwise similarity fun
-

tion (e.g. LSA [2℄). Spe
tral methods are sometimes

regarded as approximations of previously formulated


riteria (e.g. [10, 4℄) and sometimes are motivated by

graph theoreti
al 
onsiderations (e.g. the web 
luster-

ing method of [6℄). As demonstrated in [10, 6℄, these

methods are 
apable of delivering impressive image

segmentation results using simple low-level image fea-

tures. Moreover, 
omputational eÆ
ien
y is a
hieved

using sparse [10, 3℄ matrix te
hniques.

The main a
hievement of this work is to show that

there is a simple probabilisti
 interpretation that 
an

o�er insights and serve as an analysis tool for all the

spe
tral methods 
ited above. We view the pairwise

similarities as edge 
ows in a Markov random walk and

study the properties of the eigenve
tors and values of

the resulting transition matrix. Using this view, we

were able to show that several of the above methods

are subsumed by the Normalized Cut (NCut) image

segmentation algorithm of [10℄ in a sense that will be

des
ribed. Therefore, in the following, we will fo
us on

the NCut algorithm and will adopt the terminology of

image segmentation (i.e. the data points will be pixels

and the set of all pixels is the image), keeping in mind

that all the results are also valid for similarity based


lustering.

2 The Normalized Cut 
riterion and

algorithm

Here and in the following, an image will be represented

by a set of pixels I . A segmentation is a partioning

of I into mutually disjoint subsets. For ea
h pair of

pixels i; j 2 I a similarity S

ij

= S

ji

� 0 is given. In

the NCut framework the similarities S

ij

are viewed as

weights on the edges ij of a graph G over I . If S

ij

= 0

then G has no edge ij. The matrix S = [S

ij

℄ plays the

role of a \real-valued" adja
en
y matrix for G. Let

d

i

=

P

j2I

S

ij

, 
alled the degree of node i, and the

volume of a set A � I be volA =

P

i2A

d

i

:. The set of

edges between A and its 
omplement

�

A is an edge 
ut

or shortly a 
ut. The normalized 
ut (NCut) 
riterion



of [10℄ is a graph theoreti
al 
riterion for segmenting

an image into two by minimizing

NCut(A;

�

A) =

�

1

volA

+

1

vol

�

A

�

X

i2A;j2

�

A

S

ij

(1)

over all 
uts A;

�

A. Minimizing NCut means �nding

a 
ut of relatively small weight between two subsets

with strong internal 
onne
tions. In [10℄ it is shown

that optimizing the NCut 
riterion is NP hard.

The NCut algorithm was introdu
ed in [10℄ as an ap-

proximate method of solving the minimum NCut prob-

lem by way of eigenvalues and eigenve
tors. It uses the

Lapla
ian matrix L = D � S where D is a diagonal

matrix formed with the degrees of the nodes. The

algorithm 
onsists of solving the generalized eigenval-

ues/ve
tors problem

Lx = �Dx (2)

The NCut algorithm fo
uses on the se
ond smallest

eigenvalue of (2) and its 
orresponding eigenve
tor,


all them �

L

and x

L

respe
tively.

Figure 1 shows an example of a similarity matrix that

has a pronoun
ed blo
k stru
ture (Ib), and its �rst 3

generalized eigenve
tors (IIIa). In the �gure we see

that the elements of x

L

have approximately the same

value within ea
h 
luster. In [10℄ it is shown that when

there is a partitioning of A;

�

A of I su
h that

x

L

i

=

�

�; i 2 A

�; i 2

�

A

(3)

then A;

�

A is the optimal NCut and the value of the 
ut

itself is NCut(A;

�

A) = �

L

.

This result represents the basis of spe
tral segmenta-

tion by normalized 
uts. One solves the generalized

spe
tral problem (2), then �nds a partitioning of the

elements of x

L

into two sets 
ontaining roughly equal

values. The partitioning 
an be done by threshold-

ing the elements. The partitioning of the eigenve
tor

indu
es a partition on I whi
h is the desired segmen-

tation. To obtain more than two segments one pro-


eeds re
ursively. We 
all this pro
edure the NCut

algorithm. A ve
tor that satis�es (3) is 
alled pie
e-

wise 
onstant w.r.t. the partition (A;

�

A). In se
tion 4

and later we 
onsider eigenve
tors whi
h are pie
ewise


onstant w.r.t a partition of I into k sets.

As presented above, the NCut algorithm la
ks a satis-

fa
tory intuitive explanation. In parti
ular, the NCut

algorithm and 
riterion o�er little intuition about (1)

what 
auses x

L

to be pie
ewise 
onstant? (2) what

happens when there are more than two segments and

(3) how does the algorithm degrade its performan
e

when x

L

is not pie
ewise 
onstant?

The random walk interpretation that we des
ribe now

will answer the �rst two questions as well as give a bet-

ter understanding of what spe
tral 
lustering is a
hiev-

ing. We shall not approa
h the third issue here: in-

stead, we point to the results of [4℄ that apply to the

NCut algorithm as well.

3 Markov walks and normalized 
uts

By \normalizing" the similarity matrix S one obtains

the sto
hasti
 matrix

P = D

�1

S (4)

whose row sums are all 1. As it is known from the

theory of Markov random walks, P

ij

represents the

probability of moving from node i to j in one step,

given that we are in i. The eigenvalues of P are �

1

=

1 � �

2

� : : : �

n

� �1; x

1:::n

are the eigenve
tors.

The �rst eigenve
tor of P is x

1

=1, the ve
tor whose

elements are all equal to 1. W.l.o.g we assume that no

node has degree 0.

Let us now examine the spe
tral problem for the ma-

trix P , namely the solutions of the equation

Px = �x (5)

Proposition 1 If �; x are solutions of (5) and P =

D

�1

S, then (1� �); x are solutions of (2).

In other words, the NCut algorithm and the matrix

P have the same eigenve
tors; the eigenvalues of P

are identi
al to the di�eren
e between 1 and the gen-

eralized eigenvalues in (2). Proposition 1 shows the

equivalen
e between the spe
tral problem formulated

by the NCut algorithm and the eigenvalues/ve
tors of

the sto
hasti
 matrix P . This also helps explaining

why the NCut algorithm uses the se
ond smallest gen-

eralized eigenve
tor: the smallest eigenve
tor of (2)


orresponds to the largest eigenve
tor of P , whi
h in

most 
ases of interest is equal to 1 thus 
ontaining no

information. The proof of proposition 1 is elementary

and therefore left as an exer
ise to the reader.

The NCut 
riterion 
an also be understood in this

framework. First de�ne �

1

= [�

1

i

℄

i2I

by

�

1

i

=

d

i

volI

: (6)

It is easy to verify that P

T

�

1

= �

1

and thus that �

1

is a stationary distribution of the Markov 
hain. If the


hain is ergodi
, whi
h happens under mild 
onditions

[1℄, then �

1

is the only distribution over I with this

property. Note also that the Markov 
hain is reversible

be
ause

�

1

i

P

ij

= �

1

j

P

ji

= S

ij

=volI: (7)
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Figure 1: Four matri
es (row I), their eigenvalues (row II) and �rst 3 eigenve
tors: x

1

'|', x

2

(= x

L

in b,d) 'Æ', x

3

'?'

(row III). All matri
es are represented on a gray-s
ale with bla
k for 0 and lighter shades for higher values. All matri
es


orrespond to \images" of 20 pixels forming 3 segments. (a) An approximately blo
k-diagonal sto
hasti
 matrix P

1

. The

se
ond and third eigenve
tor are approximately pie
ewise 
onstant and 
ontain information about the segmentation. (b)

The symmetri
 similarity matrix whi
h produ
ed P

1

. Note that all three �rst eigenve
tors 
ontain information about the

segmentation. The eigenve
tors solving (2) for this matrix are identi
al to the eigenve
tors of P

1

. (
) A blo
k-sto
hasti


matrix P

2

. The se
ond and third eigenve
tors are pie
ewise 
onstant and re
e
t the 
orre
t segmentation. (d) The

symmetri
 similarity matrix that produ
ed P

2

. The �rst 3 eigenve
tors are only roughly pie
ewise 
onstant and result in

a wrong segmentation.

De�ne P

AB

= Pr[A ! BjA℄ as the probability of the

random walk transitioning from set A � I to set B � I

in one step if the 
urrent state is in A and the random

walk is started in its stationary distribution.

P

AB

=

P

i2A;j2B

�

1

i

P

ij

�

1

(A)

=

P

i2A;j2B

S

ij

vol(A)

(8)

From this it follows that

NCut(A;

�

A) = P

A

�

A

+ P

�

A
A

(9)

If the NCut is small for a 
ertain partition A;

�

A then

it means that the probabilities of evading set A, on
e

the walk is in it and of evading its 
omplement

�

A are

both small. Intuitively, we have partioned the set I

into two parts su
h that the random walk, on
e in one

of the parts, tends to remain in it.

The NCut is strongly related to a the 
on
ept of low


ondu
tivity sets in a Markov random walk. A low


ondu
tivity set A is a subset of I su
h that h(A) =

max(P

A

�

A

; P

�

A
A

) is small. They have been studied in

spe
tral graph theory in 
onne
tion with the mixing

time of Markov random walks [1℄. More re
ently, [4℄

uses them to de�ne a new 
riterion for 
lustering. Not


oin
identally, the heuristi
 analyzed there is strongly

similar to the NCut algorithm.

4 Sto
hasti
 matri
es with pie
ewise


onstant eigenve
tors

In the following we will use the transition matrix P

to a
hieve a better understanding of the NCut algo-

rithm. Re
all that the NCut algorithm looks at the

se
ond \largest" eigenve
tor of P , denoted by x

2

and

equal to x

L

, in order to obtain a partioning of I . We

de�ne a ve
tor x to be pie
ewise 
onstant relative to a

partition � = (A

1

; A

2

; : : : A

k

) of I i� x

i

= x

j

for i; j

pixels in the same set A

s

; s = 1; : : : k. Note that the

�rst eigenve
tor of P , being 1, is always pie
ewise 
on-

stant. Sin
e having pie
ewise 
onstant eigenve
tors is

essential for spe
tral segmentation, it is important to

understand when the matrix P has this desired prop-

erty. We study when the �rst k out of n eigenve
tors

are pie
ewise 
onstant.

Proposition 2 Let P be a matrix with rows and




olumns indexed by I that has independent eigenve
-

tors. Let � = (A

1

; A

2

; : : : A

k

) be a partition of I.

Then, P has k eigenve
tors that are pie
ewise 
on-

stant w.r.t. � and 
orrespond to non-zero eigenvalues

if and only if the sums P

is

=

P

j2A

s

P

ij

are 
onstant

for all i 2 A

s

0

and all s; s

0

= 1; : : : k and the matrix

R = [P

ss

0

℄

s;s

0

=1;:::k

(with P

ss

0

=

P

j2A

0

s

P

ij

; i 2 A

s

) is

non-singular.

Lemma 3 If the matrix P of dimension n is of the

form P = D

�1

S with S symmetri
 and D non-singular

then P has n independent eigenve
tors.

The proof of the lemma is elementary and therefore

omitted; proposition 2 is proved in the appendix. We


all a sto
hasti
 matrix P satisfying the 
onditions of

Proposition 2 a blo
k-sto
hasti
 matrix. Intuitively,

Proposition 2 says that a sto
hasti
 matrix has pie
e-

wise 
onstant eigenve
tors if the underlying Markov


hain 
an be aggregated into a Markov 
hain with state

spa
e � = fA

1

; : : : A

k

g and transition probability ma-

trix

^

P . This opens interesting 
onne
tions between the

�eld of spe
tral segmentation and the body of work on

aggregability or (lumpability) [5℄ of Markov 
hains.

It has been already shown [12, 4, 10℄ that for a dis
on-

ne
ted graph G (resulting in a blo
k diagonal S) the

NCut algorithm and several others work 
orre
tly. A

blo
k diagonal S is a blo
k-sto
hasti
 matrix for whi
h

^

P is the unit matrix. It represents the 
ase when pix-

els in di�erent segments are strongly dissimilar. This


ase, illustrated in �gure 1 (a,b), is by far the easiest

situation for a segmentation problem.

Now Proposition 2 shows that in fa
t spe
tral 
luster-

ing is able to group pixels by the similarity of their

transition probabilities to subsets of I . This situation

is shown in �gure 1,
,d. Experiments [10℄ show that

NCut works well on many graphs that are not dis
on-

ne
ted supporting this result with pra
ti
al eviden
e.

However, having pie
ewise 
onstant eigenve
tors is

only part of the story. It is also ne
essary that the

eigenvalues of

^

P , 
orresponding to the pie
ewise 
on-

stant eigenve
tors be larger than the other n�k eigen-

values of P , that we shall 
all spurious eigenvalues.

With the above insights, we 
an de�ne an abstra
t

algorithm 
alled Modi�ed NCut (MNCut) whi
h �nds

all k segments in one pass by: (1) 
omputing P from

S, its eigenvalues/ve
tors (2) sele
ting the largest k

eigenvalues and their 
orresponding eigenve
tors (3)

extra
ting the segments by �nding the approximately

equal elements in the sele
ted eigenve
tors. This last

step 
an be done e.g. by proje
ting onto or by k-means

(with k known) in the k� 1 dimensional spa
e de�ned

by the rows of [x

2

: : : x

k

℄.

(a) (b)

(
) (d)

Figure 2: Image segmentation by the MNCut algo-

rithm: (a) the original image; (b) the output of the

edge dete
tor; (
,d) segmentation by MNCut using the

�rst 6 respe
tively 7 eigenve
tors and k-means 
luster-

ing. Two pixels are dissimilar if they are more than

30 apart or if they are separated by an edge; other-

wise they are 
onsidered similar. Note that even with

this simple similarity measure and in spite of the many

stripes, most of the tiger is segmented 
orre
tly.

Proposition 4 The MNCut algorithm is exa
t if P

is blo
k-sto
hasti
 and the eigenvalues of

^

P are larger

than the spurious eigenvalues.

Thus MNCut exploits both dissimilarities between pix-

els in di�erent segments and similarity of transitions

for pixels in the same segment.

The MNCut approa
h has another potential advan-

tage: if there is a gap between the eigenvalues of

^

P

and the spurious eigenvalues (as in �gure 1, 
, d), then

the number of segments k 
an be determined automat-

i
ally. This is likely to happen when (i)

^

P approa
hes

the unit matrix, its eigenvalues tending to 1, and (ii)

the rows of P in the same segment tend to be equal,

pushing the spurious eigenvalues toward 0. Thus, on
e

again, a mix of dissimilarity between 
lusters and sim-

ilarity of transitions des
ribes a data set that is natu-



rally 
lustered.

5 Relationship to other spe
tral

segmentation methods

The NCut algorithm and 
riterion is only one of the re-


ently proposed segmentation methods that use eigen-

ve
tors. Here we dis
uss a few others: the segmenta-

tion algorithms of Perona and Freeman (PF) [8℄ and of

S
ott and Longuet-Higgins (SLH) [9℄. In addition, we

dis
uss two 
lustering methods that have the same 
a-

vor: the Kleinberg algorithm for dis
overing web 
om-

munities (K) [6℄ and the long known latent semanti


analysis (LSA) in the variant proposed by Kannan,

Vempala and Vetta (KVV) [4℄.

For the algorithms of PF, SLH, and K we established

the following: Ea
h of them has an \ideal" 
ase for

whi
h it will work exa
tly. For PF, the ideal 
ase is

the 
ase when S is blo
k diagonal. For SLH, when the

n� n matrix Q = [y

1

y

2

::y

k

℄[y

1

y

2

::y

k

℄

T

, with y

1

y

2

::y

k

the eigenve
tors of S, has element Q

ij

= 1 if pixels

i; j are in the same segment and 0 otherwise. The K

algorithm allows one to pursue a variety of obje
tives.

One of them is �nding 
lusters of related do
uments.

For this obje
tive, the ideal 
ase 
orresponds to a di-

re
ted link graph 
onsisting of several dis
onne
ted d-

regular 
lusters. Then the se
ond eigenve
tor used by

K will be pie
ewise 
onstant w.r.t to this partition. In

pra
ti
e, however, the K algorithm �nds the elements

of the eigenve
tor that are largest in magnitude and

returns them as representative or \authoritative" for

the 
luster. We 
onje
ture that these elements 
or-

respond to the the pages with highest degree (most

links) within the 
luster. Proving this 
onje
ture is a

topi
 of 
urrent resear
h.

It is easy to show that ea
h of the above ideal sit-

uations imply that the resulting sto
hasti
 matrix P

satis�es the 
onditions of Proposition 4 and thus the

MNCut algorithm will also work exa
tly in these sit-

uations. In this sense NCut subsumes PF, SLH and

(
ertain variants of) K. Moreover, none of the three

other methods takes into a

ount more information

than NCut does.

Another important aspe
t of a spe
tral 
lustering al-

gorithm is robustness. Empiri
al results of [12℄ show

that NCut is at least as robust as PF and SLH in

pra
ti
al situations.

The algorithm of KVV is essentially a spe
ial 
ase

of MNCut where: S

ij

is de�ned as f

T

i

f

j

with f

i

; f

j

ve
tors of positive features; the method in step (3)

is proje
tion onto the s
aled eigenve
tors �

s

x

s

. [4℄

proves error bounds that depend on the deviation of

S from blo
k-diagonality for both KVV and the re
ur-

sive NCut algorithm. These are the only robustness

results for the NCut algorithm that we know of.

6 Con
lusions

The relationship between the Lapla
ian of a graph

and Markov 
hains has been known [1℄ but so far it

has been used mainly to estimate mixing properties

of 
hains by way of 
uts. This paper opens a new

perspe
tive: revealing the properties of the underlying

weighted graph by ways of the Markov 
hain. This

shift in perspe
tive is made even more valuable be-


ause of the su

esses of sampling te
hniques [10, 3℄ in

tra
tably obtaining low rank approximations to very

large matri
es. As the 
ase of LSA proves it, these al-

gorithms are used in pra
ti
e on large s
ale problems.

Our view has provided an elegant analysis method. It

has enabled us to give a 
omplete and intuitive 
har-

a
terization of the NCut algorithm. We analyzed sev-

eral other algorithms with the same tool to realize that

they look at the same kind of features (mainly dissimi-

larity between pixels in di�erent 
lusters) so that both

te
hni
ally and from the end result point of view, they

are in fa
t all variants of the same algorithm.

We argue for studying the MNCut algorithm as a 
lus-

tering 
riterion in its own right. MNCut is one of

the rare 
ases when a 
lustering method is both un-

derstandable, 
omputationally tra
table (or approx-

imable with known bounds) and yielding itself to anal-

ysis. We may then study other 
lustering 
riteria (see

[3℄) as approximating MNCut and 
on
lude that they

are not so di�erent from ea
h other after all.

But we 
an also formulate 
lustering 
riteria that are

genuinely di�erent: for example, an eigenvalue of P

near -1 is an indi
ation that the graph is bipartite. We


an easily imagine an algorithm for bipartite 
lustering

by simply looking at the eigenve
tor 
orresponding to

the most negative eigenvalue.

Another ex
iting issue is �nding ways to balan
e num-

ber of 
lusters and 
lustering quality, in other words

automati
ally �nding the number of 
lusters. We think

that the Markov 
hain perspe
tive 
an be fruitful in

this respe
t as well. Two very innovative approa
hes

exist already in [4℄ and [11℄.

The impli
ations are even further rea
hing: For ex-

ample, in many 
ases S is obtained from a positive

symmetri
 kernel. We 
an transfer our results about

P to 
hara
terizations of the kernel 
lasses that sat-

isfy 
ertain requirements or to 
hara
terizations of the

data distribution that is \�t for 
lustering". The tran-

sition matrix view also tells us how to 
ombat \ridge

e�e
ts" in kernel derived similarity matri
es.



In vision, a 
ommon issue is 
ombining multiple 
ri-

teria (e.g 
olor, texture) into one similarity matrix.

The Markov walk perspe
tive helps us to �nd 
ombina-

tion operators that preserve the underlying 
lustering

(i.e. that preserve blo
k sto
hasti
ity). For example, a


onvex 
ombination of transition matri
es preserves it,

while elementwise produ
t, a popular method for 
om-

bining multiple S matri
es, doesn't. We address this

issues and propose a method for learning the optimal


ombination in [7℄.

A Proof of Proposition 2

\)" We assume that P has k independent and pie
e-

wise 
onstant eigenve
tors x

1

; : : : x

k

w.r.t. to the

partition � that 
orrespond to non-zero eigenvalues

�

1

: : : �

k

. For x a pie
ewise 
onstant ve
tor w.r.t �,

let x 7! y be the one-to-one mapping that asso
iates

x with the k-dimensional ve
tor y 
onsisting of one

element of x from ea
h segment, i.e.

y(x)

s

= x

i

for i 2 A

s

; s = 1; : : : k (10)

Denote by y

l

= y(x

l

) for l = 1; : : : k.

Fix i; i

0

2 A

s

for some s = 1; : : : k. We have

(Px

l

)

i

=

k

X

s

0

=1

0

�

X

j2A

s

0

P

ij

1

A

y

l

s

0

= �

l

x

l

i

(11)

(Px

l

)

i

0

=

k

X

s

0

=1

0

�

X

j2A

s

0

P

i

0

j

1

A

y

l

s

0

= �

l

x

l

i

0

(12)

for ea
h eigenve
tor x

l

; l = 1; : : : k. Denote P

is

0

=

P

j2A

s

0

P

ij

; P

i

0

s

0

=

P

j2A

s

0

P

i

0

j

. By substra
ting

equation (12) from (11) we get

k

X

s

0

=1

(P

is

0

� P

i

0

s

0

)y

l

s

0

= 0 for l = 1; : : : k (13)

This is a linear system of k equations and k unknowns,

with 
oeÆ
ients y

l

s

0

. Sin
e the eigenve
tors are inde-

pendent, the above system's matrix is non-singular,

implying that the system admits only the trivial so-

lution P

is

0

� P

i

0

s

0

= 0. Sin
e i; i

0

and the segment s

are arbitrary, it follows that for all i 2 A

s

the sums

P

is

0

; s

0

= 1; : : : k are 
onstant in ea
h segment A

s

and


an be denoted by the symbol P

ss

0

.

Constru
t now the matrix

^

P = [P

ss

0

℄

s;s

0

=1;:::k

. It is

easy to verify that the eigenve
tors/values of

^

P are

y

1

; : : : y

k

and �

1

; : : : �

k

. Sin
e the latter are all non-

zero, it follows that

^

P is non-singular.

\(" We now have to prove the 
onverse, i.e. that

if

^

P exists and is non-singular then P has k eigen-

ve
tors that are pie
ewise 
onstant w.r.t the parti-

tion � and their eigenvalues are non-zero. Denote by

y

l

; �

l

; l = 1; : : : k the eigenve
tors/values of

^

P . Now

we 
an simply verify that x

l

= x(y

l

) for l = 1; : : : k are

independent eigenve
tors of P ea
h 
orresponding to

�

l

.

Referen
es

[1℄ F. R. K. Chung. Spe
tral Graph Theory. Ameri
an

Methemati
al So
iety, 1997.

[2℄ S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.

Landauer, and R. Harshman. Indexing by latent

semanti
 analysis. Journal of the Ameri
an So
i-

ety For Information S
ien
e, 41:391{407, 1990.

[3℄ P. Drineas, R. Kannan, A. Frieze, S. Vempala,

and V. Vinay. Clustering in large graphs and ma-

tri
es. In Pro
. of the 10th ACM-SIAM Sympo-

sium on Dis
rete Algorithms, 1999.

[4℄ R. Kannan, S. Vempala, and A. Vetta. On 
lus-

terings: good, bad and spe
tral. In Pro
. of 41st

Symposium on the Foundations of Computer S
i-

en
e, FOCS 2000, 2000.

[5℄ J. R. Kemeny and J. L. Snell. Finite Markov

Chains. Van Nostrand, New York, 1960.

[6℄ J. M. Kleinberg. Authoritative sour
es in a hyper-

linked environment. Te
hni
al report, IBM Re-

sear
h Division, Almaden Resear
h Center, 1997.

[7℄ M. Meil�a and J. Shi. Learning segmentation by

random walks. In T. K. Leen, T. G. Dietteri
h,

and V. Tresp, editors, Advan
es in Neural In-

formation Pro
essing Systems, volume 13, Cam-

bridge, MA, 2001. MIT Press. (to appear).

[8℄ P. Perona and W. Freeman. A fa
torization ap-

proa
h to grouping. In European Conferen
e on

Computer Vision, 1998.

[9℄ G. S
ott and H. C. Longuet-Higgins. Feature

grouping by relo
alsation of eigenve
tors of the

proximity matrix. In Pro
eeding of the British

Ma
hine Vision Conferen
e, 1990.

[10℄ J. Shi and J. Malik. Normalized 
uts and image

segmentation. PAMI, 2000.

[11℄ N. Tishby and N. Slonim. Data 
lustering by

Markovian relaxation via the information bottle-

ne
k method. In T. K. Leen, T. G. Dietteri
h, and

V. Tresp, editors, Advan
es in Neural Information

Pro
essing Systems, volume 13, Cambridge, MA,

2001. MIT Press. (to appear).

[12℄ Y. Weiss. Segmentation using eigenve
tors: a uni-

fying view. In International Conferen
e on Com-

puter Vision, 1999.


