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Abstrat

We present a new view of lustering and seg-

mentation by pairwise similarities. We inter-

pret the similarities as edge ows in a Markov

random walk and study the eigenvalues and

eigenvetors of the walk's transition matrix.

This view shows that spetral methods for

lustering and segmentation have a proba-

bilisti foundation. We prove that the Nor-

malized Cut method arises naturally from

our framework and we provide a omplete

haraterization of the ases when the Nor-

malized Cut algorithm is exat. Then we dis-

uss other spetral segmentation and luster-

ing methods showing that several of them are

essentially the same as NCut.

1 Introdution

This paper fouses on pairwise (or similarity-based)

lustering and image segmentation. In ontrast to sta-

tistial lustering methods, that assume a probabilisti

model that generates the observed data points (or pix-

els), pairwise lustering de�nes a similarity funtion

between pairs of points and then formulates a rite-

rion (e.g. maximum total intraluster similarity) that

the lustering must optimize. The optimality riteria

quantify the intuitive notion that points in a luster

(or pixels in a segment) are similar, whereas points in

di�erent lusters are dissimilar. The similarities are

onsidered as given in the ontext of the lustering al-

gorithm; in pratie (doument lustering, image seg-

mentation) �nding a \good" similarity funtion is part

of the art of the domain pratitioner.

An inreasingly popular approah to similarity based

lustering and segmentation is by spetral methods.

These methods use eigenvalues and eigenvetors of a

matrix onstruted from the pairwise similarity fun-

tion (e.g. LSA [2℄). Spetral methods are sometimes

regarded as approximations of previously formulated

riteria (e.g. [10, 4℄) and sometimes are motivated by

graph theoretial onsiderations (e.g. the web luster-

ing method of [6℄). As demonstrated in [10, 6℄, these

methods are apable of delivering impressive image

segmentation results using simple low-level image fea-

tures. Moreover, omputational eÆieny is ahieved

using sparse [10, 3℄ matrix tehniques.

The main ahievement of this work is to show that

there is a simple probabilisti interpretation that an

o�er insights and serve as an analysis tool for all the

spetral methods ited above. We view the pairwise

similarities as edge ows in a Markov random walk and

study the properties of the eigenvetors and values of

the resulting transition matrix. Using this view, we

were able to show that several of the above methods

are subsumed by the Normalized Cut (NCut) image

segmentation algorithm of [10℄ in a sense that will be

desribed. Therefore, in the following, we will fous on

the NCut algorithm and will adopt the terminology of

image segmentation (i.e. the data points will be pixels

and the set of all pixels is the image), keeping in mind

that all the results are also valid for similarity based

lustering.

2 The Normalized Cut riterion and

algorithm

Here and in the following, an image will be represented

by a set of pixels I . A segmentation is a partioning

of I into mutually disjoint subsets. For eah pair of

pixels i; j 2 I a similarity S

ij

= S

ji

� 0 is given. In

the NCut framework the similarities S

ij

are viewed as

weights on the edges ij of a graph G over I . If S

ij

= 0

then G has no edge ij. The matrix S = [S

ij

℄ plays the

role of a \real-valued" adjaeny matrix for G. Let

d

i

=

P

j2I

S

ij

, alled the degree of node i, and the

volume of a set A � I be volA =

P

i2A

d

i

:. The set of

edges between A and its omplement

�

A is an edge ut

or shortly a ut. The normalized ut (NCut) riterion



of [10℄ is a graph theoretial riterion for segmenting

an image into two by minimizing

NCut(A;

�

A) =

�

1

volA

+

1

vol

�

A

�

X

i2A;j2

�

A

S

ij

(1)

over all uts A;

�

A. Minimizing NCut means �nding

a ut of relatively small weight between two subsets

with strong internal onnetions. In [10℄ it is shown

that optimizing the NCut riterion is NP hard.

The NCut algorithm was introdued in [10℄ as an ap-

proximate method of solving the minimum NCut prob-

lem by way of eigenvalues and eigenvetors. It uses the

Laplaian matrix L = D � S where D is a diagonal

matrix formed with the degrees of the nodes. The

algorithm onsists of solving the generalized eigenval-

ues/vetors problem

Lx = �Dx (2)

The NCut algorithm fouses on the seond smallest

eigenvalue of (2) and its orresponding eigenvetor,

all them �

L

and x

L

respetively.

Figure 1 shows an example of a similarity matrix that

has a pronouned blok struture (Ib), and its �rst 3

generalized eigenvetors (IIIa). In the �gure we see

that the elements of x

L

have approximately the same

value within eah luster. In [10℄ it is shown that when

there is a partitioning of A;

�

A of I suh that

x

L

i

=

�

�; i 2 A

�; i 2

�

A

(3)

then A;

�

A is the optimal NCut and the value of the ut

itself is NCut(A;

�

A) = �

L

.

This result represents the basis of spetral segmenta-

tion by normalized uts. One solves the generalized

spetral problem (2), then �nds a partitioning of the

elements of x

L

into two sets ontaining roughly equal

values. The partitioning an be done by threshold-

ing the elements. The partitioning of the eigenvetor

indues a partition on I whih is the desired segmen-

tation. To obtain more than two segments one pro-

eeds reursively. We all this proedure the NCut

algorithm. A vetor that satis�es (3) is alled piee-

wise onstant w.r.t. the partition (A;

�

A). In setion 4

and later we onsider eigenvetors whih are pieewise

onstant w.r.t a partition of I into k sets.

As presented above, the NCut algorithm laks a satis-

fatory intuitive explanation. In partiular, the NCut

algorithm and riterion o�er little intuition about (1)

what auses x

L

to be pieewise onstant? (2) what

happens when there are more than two segments and

(3) how does the algorithm degrade its performane

when x

L

is not pieewise onstant?

The random walk interpretation that we desribe now

will answer the �rst two questions as well as give a bet-

ter understanding of what spetral lustering is ahiev-

ing. We shall not approah the third issue here: in-

stead, we point to the results of [4℄ that apply to the

NCut algorithm as well.

3 Markov walks and normalized uts

By \normalizing" the similarity matrix S one obtains

the stohasti matrix

P = D

�1

S (4)

whose row sums are all 1. As it is known from the

theory of Markov random walks, P

ij

represents the

probability of moving from node i to j in one step,

given that we are in i. The eigenvalues of P are �

1

=

1 � �

2

� : : : �

n

� �1; x

1:::n

are the eigenvetors.

The �rst eigenvetor of P is x

1

=1, the vetor whose

elements are all equal to 1. W.l.o.g we assume that no

node has degree 0.

Let us now examine the spetral problem for the ma-

trix P , namely the solutions of the equation

Px = �x (5)

Proposition 1 If �; x are solutions of (5) and P =

D

�1

S, then (1� �); x are solutions of (2).

In other words, the NCut algorithm and the matrix

P have the same eigenvetors; the eigenvalues of P

are idential to the di�erene between 1 and the gen-

eralized eigenvalues in (2). Proposition 1 shows the

equivalene between the spetral problem formulated

by the NCut algorithm and the eigenvalues/vetors of

the stohasti matrix P . This also helps explaining

why the NCut algorithm uses the seond smallest gen-

eralized eigenvetor: the smallest eigenvetor of (2)

orresponds to the largest eigenvetor of P , whih in

most ases of interest is equal to 1 thus ontaining no

information. The proof of proposition 1 is elementary

and therefore left as an exerise to the reader.

The NCut riterion an also be understood in this

framework. First de�ne �

1

= [�

1

i

℄

i2I

by

�

1

i

=

d

i

volI

: (6)

It is easy to verify that P

T

�

1

= �

1

and thus that �

1

is a stationary distribution of the Markov hain. If the

hain is ergodi, whih happens under mild onditions

[1℄, then �

1

is the only distribution over I with this

property. Note also that the Markov hain is reversible

beause

�

1

i

P

ij

= �

1

j

P

ji

= S

ij

=volI: (7)
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Figure 1: Four matries (row I), their eigenvalues (row II) and �rst 3 eigenvetors: x

1

'|', x

2

(= x

L

in b,d) 'Æ', x

3

'?'

(row III). All matries are represented on a gray-sale with blak for 0 and lighter shades for higher values. All matries

orrespond to \images" of 20 pixels forming 3 segments. (a) An approximately blok-diagonal stohasti matrix P

1

. The

seond and third eigenvetor are approximately pieewise onstant and ontain information about the segmentation. (b)

The symmetri similarity matrix whih produed P

1

. Note that all three �rst eigenvetors ontain information about the

segmentation. The eigenvetors solving (2) for this matrix are idential to the eigenvetors of P

1

. () A blok-stohasti

matrix P

2

. The seond and third eigenvetors are pieewise onstant and reet the orret segmentation. (d) The

symmetri similarity matrix that produed P

2

. The �rst 3 eigenvetors are only roughly pieewise onstant and result in

a wrong segmentation.

De�ne P

AB

= Pr[A ! BjA℄ as the probability of the

random walk transitioning from set A � I to set B � I

in one step if the urrent state is in A and the random

walk is started in its stationary distribution.

P

AB

=

P

i2A;j2B

�

1

i

P

ij

�

1

(A)

=

P

i2A;j2B

S

ij

vol(A)

(8)

From this it follows that

NCut(A;

�

A) = P

A

�

A

+ P

�

A
A

(9)

If the NCut is small for a ertain partition A;

�

A then

it means that the probabilities of evading set A, one

the walk is in it and of evading its omplement

�

A are

both small. Intuitively, we have partioned the set I

into two parts suh that the random walk, one in one

of the parts, tends to remain in it.

The NCut is strongly related to a the onept of low

ondutivity sets in a Markov random walk. A low

ondutivity set A is a subset of I suh that h(A) =

max(P

A

�

A

; P

�

A
A

) is small. They have been studied in

spetral graph theory in onnetion with the mixing

time of Markov random walks [1℄. More reently, [4℄

uses them to de�ne a new riterion for lustering. Not

oinidentally, the heuristi analyzed there is strongly

similar to the NCut algorithm.

4 Stohasti matries with pieewise

onstant eigenvetors

In the following we will use the transition matrix P

to ahieve a better understanding of the NCut algo-

rithm. Reall that the NCut algorithm looks at the

seond \largest" eigenvetor of P , denoted by x

2

and

equal to x

L

, in order to obtain a partioning of I . We

de�ne a vetor x to be pieewise onstant relative to a

partition � = (A

1

; A

2

; : : : A

k

) of I i� x

i

= x

j

for i; j

pixels in the same set A

s

; s = 1; : : : k. Note that the

�rst eigenvetor of P , being 1, is always pieewise on-

stant. Sine having pieewise onstant eigenvetors is

essential for spetral segmentation, it is important to

understand when the matrix P has this desired prop-

erty. We study when the �rst k out of n eigenvetors

are pieewise onstant.

Proposition 2 Let P be a matrix with rows and



olumns indexed by I that has independent eigenve-

tors. Let � = (A

1

; A

2

; : : : A

k

) be a partition of I.

Then, P has k eigenvetors that are pieewise on-

stant w.r.t. � and orrespond to non-zero eigenvalues

if and only if the sums P

is

=

P

j2A

s

P

ij

are onstant

for all i 2 A

s

0

and all s; s

0

= 1; : : : k and the matrix

R = [P

ss

0

℄

s;s

0

=1;:::k

(with P

ss

0

=

P

j2A

0

s

P

ij

; i 2 A

s

) is

non-singular.

Lemma 3 If the matrix P of dimension n is of the

form P = D

�1

S with S symmetri and D non-singular

then P has n independent eigenvetors.

The proof of the lemma is elementary and therefore

omitted; proposition 2 is proved in the appendix. We

all a stohasti matrix P satisfying the onditions of

Proposition 2 a blok-stohasti matrix. Intuitively,

Proposition 2 says that a stohasti matrix has piee-

wise onstant eigenvetors if the underlying Markov

hain an be aggregated into a Markov hain with state

spae � = fA

1

; : : : A

k

g and transition probability ma-

trix

^

P . This opens interesting onnetions between the

�eld of spetral segmentation and the body of work on

aggregability or (lumpability) [5℄ of Markov hains.

It has been already shown [12, 4, 10℄ that for a dison-

neted graph G (resulting in a blok diagonal S) the

NCut algorithm and several others work orretly. A

blok diagonal S is a blok-stohasti matrix for whih

^

P is the unit matrix. It represents the ase when pix-

els in di�erent segments are strongly dissimilar. This

ase, illustrated in �gure 1 (a,b), is by far the easiest

situation for a segmentation problem.

Now Proposition 2 shows that in fat spetral luster-

ing is able to group pixels by the similarity of their

transition probabilities to subsets of I . This situation

is shown in �gure 1,,d. Experiments [10℄ show that

NCut works well on many graphs that are not dison-

neted supporting this result with pratial evidene.

However, having pieewise onstant eigenvetors is

only part of the story. It is also neessary that the

eigenvalues of

^

P , orresponding to the pieewise on-

stant eigenvetors be larger than the other n�k eigen-

values of P , that we shall all spurious eigenvalues.

With the above insights, we an de�ne an abstrat

algorithm alled Modi�ed NCut (MNCut) whih �nds

all k segments in one pass by: (1) omputing P from

S, its eigenvalues/vetors (2) seleting the largest k

eigenvalues and their orresponding eigenvetors (3)

extrating the segments by �nding the approximately

equal elements in the seleted eigenvetors. This last

step an be done e.g. by projeting onto or by k-means

(with k known) in the k� 1 dimensional spae de�ned

by the rows of [x

2

: : : x

k

℄.

(a) (b)

() (d)

Figure 2: Image segmentation by the MNCut algo-

rithm: (a) the original image; (b) the output of the

edge detetor; (,d) segmentation by MNCut using the

�rst 6 respetively 7 eigenvetors and k-means luster-

ing. Two pixels are dissimilar if they are more than

30 apart or if they are separated by an edge; other-

wise they are onsidered similar. Note that even with

this simple similarity measure and in spite of the many

stripes, most of the tiger is segmented orretly.

Proposition 4 The MNCut algorithm is exat if P

is blok-stohasti and the eigenvalues of

^

P are larger

than the spurious eigenvalues.

Thus MNCut exploits both dissimilarities between pix-

els in di�erent segments and similarity of transitions

for pixels in the same segment.

The MNCut approah has another potential advan-

tage: if there is a gap between the eigenvalues of

^

P

and the spurious eigenvalues (as in �gure 1, , d), then

the number of segments k an be determined automat-

ially. This is likely to happen when (i)

^

P approahes

the unit matrix, its eigenvalues tending to 1, and (ii)

the rows of P in the same segment tend to be equal,

pushing the spurious eigenvalues toward 0. Thus, one

again, a mix of dissimilarity between lusters and sim-

ilarity of transitions desribes a data set that is natu-



rally lustered.

5 Relationship to other spetral

segmentation methods

The NCut algorithm and riterion is only one of the re-

ently proposed segmentation methods that use eigen-

vetors. Here we disuss a few others: the segmenta-

tion algorithms of Perona and Freeman (PF) [8℄ and of

Sott and Longuet-Higgins (SLH) [9℄. In addition, we

disuss two lustering methods that have the same a-

vor: the Kleinberg algorithm for disovering web om-

munities (K) [6℄ and the long known latent semanti

analysis (LSA) in the variant proposed by Kannan,

Vempala and Vetta (KVV) [4℄.

For the algorithms of PF, SLH, and K we established

the following: Eah of them has an \ideal" ase for

whih it will work exatly. For PF, the ideal ase is

the ase when S is blok diagonal. For SLH, when the

n� n matrix Q = [y

1

y

2

::y

k

℄[y

1

y

2

::y

k

℄

T

, with y

1

y

2

::y

k

the eigenvetors of S, has element Q

ij

= 1 if pixels

i; j are in the same segment and 0 otherwise. The K

algorithm allows one to pursue a variety of objetives.

One of them is �nding lusters of related douments.

For this objetive, the ideal ase orresponds to a di-

reted link graph onsisting of several disonneted d-

regular lusters. Then the seond eigenvetor used by

K will be pieewise onstant w.r.t to this partition. In

pratie, however, the K algorithm �nds the elements

of the eigenvetor that are largest in magnitude and

returns them as representative or \authoritative" for

the luster. We onjeture that these elements or-

respond to the the pages with highest degree (most

links) within the luster. Proving this onjeture is a

topi of urrent researh.

It is easy to show that eah of the above ideal sit-

uations imply that the resulting stohasti matrix P

satis�es the onditions of Proposition 4 and thus the

MNCut algorithm will also work exatly in these sit-

uations. In this sense NCut subsumes PF, SLH and

(ertain variants of) K. Moreover, none of the three

other methods takes into aount more information

than NCut does.

Another important aspet of a spetral lustering al-

gorithm is robustness. Empirial results of [12℄ show

that NCut is at least as robust as PF and SLH in

pratial situations.

The algorithm of KVV is essentially a speial ase

of MNCut where: S

ij

is de�ned as f

T

i

f

j

with f

i

; f

j

vetors of positive features; the method in step (3)

is projetion onto the saled eigenvetors �

s

x

s

. [4℄

proves error bounds that depend on the deviation of

S from blok-diagonality for both KVV and the reur-

sive NCut algorithm. These are the only robustness

results for the NCut algorithm that we know of.

6 Conlusions

The relationship between the Laplaian of a graph

and Markov hains has been known [1℄ but so far it

has been used mainly to estimate mixing properties

of hains by way of uts. This paper opens a new

perspetive: revealing the properties of the underlying

weighted graph by ways of the Markov hain. This

shift in perspetive is made even more valuable be-

ause of the suesses of sampling tehniques [10, 3℄ in

tratably obtaining low rank approximations to very

large matries. As the ase of LSA proves it, these al-

gorithms are used in pratie on large sale problems.

Our view has provided an elegant analysis method. It

has enabled us to give a omplete and intuitive har-

aterization of the NCut algorithm. We analyzed sev-

eral other algorithms with the same tool to realize that

they look at the same kind of features (mainly dissimi-

larity between pixels in di�erent lusters) so that both

tehnially and from the end result point of view, they

are in fat all variants of the same algorithm.

We argue for studying the MNCut algorithm as a lus-

tering riterion in its own right. MNCut is one of

the rare ases when a lustering method is both un-

derstandable, omputationally tratable (or approx-

imable with known bounds) and yielding itself to anal-

ysis. We may then study other lustering riteria (see

[3℄) as approximating MNCut and onlude that they

are not so di�erent from eah other after all.

But we an also formulate lustering riteria that are

genuinely di�erent: for example, an eigenvalue of P

near -1 is an indiation that the graph is bipartite. We

an easily imagine an algorithm for bipartite lustering

by simply looking at the eigenvetor orresponding to

the most negative eigenvalue.

Another exiting issue is �nding ways to balane num-

ber of lusters and lustering quality, in other words

automatially �nding the number of lusters. We think

that the Markov hain perspetive an be fruitful in

this respet as well. Two very innovative approahes

exist already in [4℄ and [11℄.

The impliations are even further reahing: For ex-

ample, in many ases S is obtained from a positive

symmetri kernel. We an transfer our results about

P to haraterizations of the kernel lasses that sat-

isfy ertain requirements or to haraterizations of the

data distribution that is \�t for lustering". The tran-

sition matrix view also tells us how to ombat \ridge

e�ets" in kernel derived similarity matries.



In vision, a ommon issue is ombining multiple ri-

teria (e.g olor, texture) into one similarity matrix.

The Markov walk perspetive helps us to �nd ombina-

tion operators that preserve the underlying lustering

(i.e. that preserve blok stohastiity). For example, a

onvex ombination of transition matries preserves it,

while elementwise produt, a popular method for om-

bining multiple S matries, doesn't. We address this

issues and propose a method for learning the optimal

ombination in [7℄.

A Proof of Proposition 2

\)" We assume that P has k independent and piee-

wise onstant eigenvetors x

1

; : : : x

k

w.r.t. to the

partition � that orrespond to non-zero eigenvalues

�

1

: : : �

k

. For x a pieewise onstant vetor w.r.t �,

let x 7! y be the one-to-one mapping that assoiates

x with the k-dimensional vetor y onsisting of one

element of x from eah segment, i.e.

y(x)

s

= x

i

for i 2 A

s

; s = 1; : : : k (10)

Denote by y

l

= y(x

l

) for l = 1; : : : k.

Fix i; i

0

2 A

s

for some s = 1; : : : k. We have

(Px

l

)

i

=

k

X

s

0

=1

0

�

X

j2A

s

0

P

ij

1

A

y

l

s

0

= �

l

x

l

i

(11)

(Px

l

)

i

0

=

k

X

s

0

=1

0

�

X

j2A

s

0

P

i

0

j

1

A

y

l

s

0

= �

l

x

l

i

0

(12)

for eah eigenvetor x

l

; l = 1; : : : k. Denote P

is

0

=

P

j2A

s

0

P

ij

; P

i

0

s

0

=

P

j2A

s

0

P

i

0

j

. By substrating

equation (12) from (11) we get

k

X

s

0

=1

(P

is

0

� P

i

0

s

0

)y

l

s

0

= 0 for l = 1; : : : k (13)

This is a linear system of k equations and k unknowns,

with oeÆients y

l

s

0

. Sine the eigenvetors are inde-

pendent, the above system's matrix is non-singular,

implying that the system admits only the trivial so-

lution P

is

0

� P

i

0

s

0

= 0. Sine i; i

0

and the segment s

are arbitrary, it follows that for all i 2 A

s

the sums

P

is

0

; s

0

= 1; : : : k are onstant in eah segment A

s

and

an be denoted by the symbol P

ss

0

.

Construt now the matrix

^

P = [P

ss

0

℄

s;s

0

=1;:::k

. It is

easy to verify that the eigenvetors/values of

^

P are

y

1

; : : : y

k

and �

1

; : : : �

k

. Sine the latter are all non-

zero, it follows that

^

P is non-singular.

\(" We now have to prove the onverse, i.e. that

if

^

P exists and is non-singular then P has k eigen-

vetors that are pieewise onstant w.r.t the parti-

tion � and their eigenvalues are non-zero. Denote by

y

l

; �

l

; l = 1; : : : k the eigenvetors/values of

^

P . Now

we an simply verify that x

l

= x(y

l

) for l = 1; : : : k are

independent eigenvetors of P eah orresponding to

�

l

.
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