Announcements
 Final exam Thursday December 13, 10:3012:20 CDH 139 (note changed room!)
 Project information page Data to be posted shortly.
 Homework 5 will be due on Thursday, Nov 15
Upcoming Lectures
What will the course be about?
The class will teach the basic principles of Machine Learning, and in particular will highlight the intimate connection between statistics and computation (meaning algorithms, data structures, and optimization) in modeling large or highdimensional data. Solutions that are algorithmically elegant, often end up being also statistically sound, and sometimes when the model estimation program runs fast, we find that the model fits the data well.
These principles will be illustrated during the study of a variety of
models, problems and methods. See also the syllabus.
Who is this class for? This class is a core class in the Machine Learning/Big Data PhD Track in Statistics. For any Statistics PhD student who wants to learn Machine Learning/Big Data, this class is the fist in the triplet of graduate courses 535 > 538/548 and serves as a prerequisite to
STAT 538 Advanced Machine Learning (taught in Winter), and
STAT 548 Machine Learning for Big Data
For the Statistics MS Students in the Statistical Learning Track, this class is the third in the sequence 534,527,535 that leads to completion of this certificate.
For a bigger picture of the ML/BD classes offered at UW, see this page.
Capacity permitting, the class is open to other graduate students with
an interest in statistics, algorithms and computing, in particular to
students involved in Machine Learning research across campus.
Optional Textbook "Machine Learning: A Probabilistic Perspective" by K. Murphy
The grade is based (approximately) on homework + quizzes (5560%),
miniproject (1015%), final exam (2530%) and class participation
(5%). The homework will contain both problems and implementation
assignements. The project will consist of implementation, writeup and
poster presentation. The final exam will be in class, at the date
fixed by the university, no electronics, 6 pages of notes allowed.
Prerequisites
Instructor: Marina Meila
mmp at stat dot washington dot edu
Lectures: Tuesdays,10:30  11:50, & Thursdays 11:30:12:50 in Low XXX
Office hours: Monday 23pm in PDL B321
Course home page: http://www.stat.washington.edu/courses/stat535/fall14 (this page)
Class mailing list: stat535a_au15 at UW
