Lecture 1 Supplement: Locality Sensitive Hashing

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

October, 2018
Hash functions and hash tables

Locality Sensitive Hashing

Approximate r-neighbor retrieval by LSH

LSH by random projections

Reading: Lecture 16 notes by Moses Charikar, section 3.2
Hash functions and hash codes

Let the data space be \mathbb{R}^n, and assume some fixed probability measure on this space.

- A **family of hash functions** is a set $\mathcal{H} = \{ h : \mathbb{R}^n \to \{0, 1\} \}$ with the following properties
 1. For each h, $\Pr[h(x) = 1] \approx \frac{1}{2}$
 2. The binary random variables defined by the functions in \mathcal{H} are mutually independent.
 (Or, if \mathcal{H} is not finite, any finite random sample of such random variables is mutually
 independent.)

- Let $h_{1:k}$ be a mutually independent subset of \mathcal{H}. We call

$$g(x) = [h_1(x) \ h_2(x) \ldots \ h_k(x)] \in \{0, 1\}^k$$

the **hash code** of x.

- Note that the codes $g(x)$ are (approximately) uniformly distributed; the
 probability of any $g \in \{0, 1\}^k$ is about $\frac{1}{2^k}$.

- Useful hash functions must be fast to compute.
A hash table \mathcal{T} is a data structure in which points in \mathbb{R}^n can be stored in such a way that

1. All points with the same code g are in the same bin denoted by \mathcal{T}_g. The table need not use space for empty bins.
2. Given any value $g \in \{0, 1\}^k$, we can obtain a point in \mathcal{T}_g or find if $\mathcal{T}_g = \emptyset$ in constant time (independent of the number of points N stored in \mathcal{T}).
 Some versions of hash tables return all points in \mathcal{T}_g, e.g., as a list, in constant time.
3. It is usually assumed that storing a point x with given code $g(x)$ in a hash table is also constant time.

Hence, using a hash table to store an x or to retrieve something, involves computing k hash functions, then a constant-time access to \mathcal{T}.

When $x' \neq x$ and $g(x') = g(x)$ we call this a collision. In some applications (not of interest to us), collisions are to be avoided.
Locality Sensitive Hash Functions and Codes

- A hash function h is **locality sensitive** iff for any $x, x' \in \mathbb{R}^n$

 \[Pr[h(x) = h(x')] \geq p_1 \quad \text{when} \quad ||x - x'|| \leq r \]
 \[Pr[h(x) = h(x')] \leq p_2 \quad \text{when} \quad ||x - x'|| \geq cr \]

 with p_1, p_2, r and $c > 1$ fixed parameters (of the family \mathcal{H}) and $p_1 > p_2$.

- W.l.o.g., we set $p_1 = p_2^\rho$ for some $\rho < 1$.

- A locality sensitive h makes a weak distinction between points that are close in space vs. points that are far away. A hash code g from locality sensitive hash functions sharpens this distinction, in the sense that the probability of far away points colliding can be made arbitrarily small.

 \[p_{bad} = Pr[g(x) = g(x') \mid ||x - x'|| > cr] \leq p_2^k \]

- Assume x is not in \mathcal{T}; for any $x' \in \mathcal{D}$ which is far from x, the probability that x' collides with x is $\leq p_{bad}$.

- We construct \mathcal{T} so that $p_{bad} \leq \frac{1}{N}$ for N the sample size. For this we need Exercise (in Homework 1)

 \[k = \frac{\ln N}{-\ln p_2} \Rightarrow p_{bad} \leq \frac{1}{N} \]

- Suppose $x' \in \mathcal{T}$ is “close” to x. What is the probability that $g(x') = g(x)$?

 \[p_{good} = p_1^k = p_2^{\rho k} = \frac{1}{N^\rho} \]

 This is the probability that the bin $\mathcal{T}_g(x)$ contains x'.
Approximate r-neighbor retrieval by LSH

Input \mathcal{D} set of N points, L mutually independent hash codes $g_{1:L}$ of dimension k.

Indexing Construct L hash tables $\mathcal{T}^{1:L}$, each storing \mathcal{D}.

Retrieval Given x

1. compute $g(x)$
2. for $j = 1, 2, \ldots, L$
 if the bin $\mathcal{T}_{g(x)}^j \neq \emptyset$
 2.1 return some (all) x' from it.
 2.2 stop if a single neighbor is wanted.

Some analysis. We set $L = N^\rho$

- **Indexing time** $\propto kN^{\rho+1}$
- **Retrieval time** $\propto kN^\rho$
- **Space used** $\propto kN^{\rho+1}$

- For each $x' \in \mathcal{D}$ close to x, the probability that x' is **NOT** returned for any $j \in 1:L$ is
 \[
 (1 - \frac{1}{N^\rho})^{N^\rho} \approx \frac{1}{e}
 \]
 This can be made arbitrarily small by multiplying L with a constant.

- For each $x' \in \mathcal{D}$ far from x, the probability that x' is **NOT** returned for any $j \in 1:L$ is
 \[
 (1 - \frac{1}{N})^{N^\rho} \approx \left(\frac{1}{e}\right)^{1/N^{1-\rho}} \approx \frac{1}{e^0} = 1
 \]

- Hence, we are almost sure not to return a far point, and have a significant probability to return a close point when one exists, if no points neither far nor close are in the data. This is why this algorithm is **approximate**: it may also return points with $r < ||x' - x|| \leq cr$.

How do we find **good** hash functions?

- We need large families of h functions
- that are easy to generate randomly
- and fast to compute for a given x

- Generic method to obtain them: *random projections*
Projecting on a random vector

- Data are $x \in \mathbb{R}^n$ as usual.
- Define $h_{a,b} : \mathbb{R}^n \to \mathbb{Z}$ by
 \begin{equation}
 h_{a,b}(x) = \left\lfloor \frac{a^T x + b}{w} \right\rfloor
 \end{equation}
 with $w > 0$ a width parameter, $a \in \mathbb{R}^n$, $b \in [0, w)$.
- Intuitively, x is "projected" on a^1, then the result is quantized into bins of width w, with a grid origin given by b.

- The family of hash functions is $\mathcal{H}_w = \{ h_{a,b} : a \in \mathbb{R}^n, b \in [0, w) \}$.
- Sampling \mathcal{H}_w: $a \sim \text{Normal}(0, I_n)$, $b \sim \text{uniform}[0, w)$.
 - Because the Normal distribution is a stable distribution, this ensures that $a^T x$ is distributed as $\text{Normal}(0, ||x||^2)$. Exercise Verify this
 - Hence $a^T x - a^T x'$ is distributed as $\text{Normal}(0, ||x - x'||^2)$. Exercise Verify this
 - Moreover, if hash functions are sampled independently from \mathcal{H}_w, (and nothing is known about x) then $h_{a,b}(x), h_{a',b'}(x)$ are independent random variables. Exercise Prove this

- This type of hash functions are being widely used by approximate neighbor search algorithms.

\footnote{1a is not necessarily unit length}